cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348301 a(n) is the difference between the numerator and denominator of the (reduced) fraction Sum_{i = 1..n} 1/prime(i).

Original entry on oeis.org

-1, -1, 1, 37, 617, 10331, 205657, 4417993, 111313529, 3451185211, 113456434771, 4398448576657, 187757129777747, 8377806843970331, 406839682998275587, 22177392981497097521, 1341055344385518798469, 83727136357670859345679, 5727006517323354547143763
Offset: 1

Views

Author

Greg Tener, Oct 10 2021

Keywords

Examples

			a(1) = (p_1# / p_1) - p_1 = (2 / 2) - 2 = -1.
a(2) = (p_2# / p_1 + p_2# * p_2) - p_1 * p_2 = (6 / 2 + 6 / 3) - 2 * 3 = -1.
a(3) = 2*3*5/2 + 2*3*5/3 + 2*3*5/5 - 2*3*5 = 31 - 30 = 1.
		

Crossrefs

Cf. A024451 (numerators), A002110 (denominators).

Programs

  • Mathematica
    Numerator[#]-Denominator[#]&/@Accumulate[1/Prime[Range[20]]] (* Harvey P. Dale, Feb 05 2023 *)
  • PARI
    a(n) = my(q=sum(i=1, n, 1/prime(i))); numerator(q)-denominator(q); \\ Michel Marcus, Oct 18 2021
  • Python
    from itertools import islice
    from sympy import primorial, sieve
    def a(n): return sum(primorial(n) // p for p in islice(sieve, n)) - primorial(n) # Greg Tener, Oct 18 2021
    

Formula

a(n) = (Sum_{i = 1..n} p_n# / p_i) - p_n# where p_n# is the primorial of the n-th prime.
a(n) = A024451(n) - A002110(n).