A348305 Number of fusion rings of multiplicity one and rank n.
1, 2, 4, 10, 16, 39, 43, 96, 142
Offset: 1
Examples
For n=1, there is only the trivial fusion ring, so a(1)=1. For n=2, there are only the fusion ring of the cyclic group C2 and the Yang-Lee fusion ring, so a(2)=2.
References
- G. Lusztig, Leading coefficients of character values of Hecke algebras, Proc. Symp. in Pure Math., 47, pp. 235-262 (1987).
Links
- AnyonWiki, Fusion ring.
- P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor Categories, Mathematical Surveys and Monographs Volume 205 (2015).
- Z. Liu, S. Palcoux and Y. Ren, Classification of Grothendieck rings of complex fusion categories of multiplicity one up to rank six, Lett Math Phys 112, 54 (2022); arXiv version, arXiv:2010.10264 [math.CT], 2020-2021.
- nLab, fusion ring.
- J. Slingerland and G. Vercleyen, Exploring small fusion rings and tensor categories, Harvard Picture Language Seminar, 20th October 2020,
- J. Slingerland and G. Vercleyen, On Low Rank Fusion Rings, arXiv:2205.15637 [math-ph], 2022.
Crossrefs
Cf. A000001.
Comments