cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A348309 a(n) = Sum_{k=0..floor(n/8)} (-1)^k * binomial(n-4*k,4*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, -4, -14, -34, -69, -125, -209, -329, -493, -705, -955, -1199, -1324, -1092, -56, 2560, 8025, 18313, 36353, 66273, 113525, 184653, 286257, 422377, 589028, 763912, 888378, 837502, 372835, -928725, -3776537, -9302337, -19226889, -36034869, -63099331, -104630831, -165212760
Offset: 0

Views

Author

Seiichi Manyama, Oct 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, -6, 4, -1, 0, 0, 0, -1}, {1, 1, 1, 1, 1, 1, 1, 1}, 45] (* Amiram Eldar, Oct 11 2021 *)
  • PARI
    a(n) = sum(k=0, n\8, (-1)^k*binomial(n-4*k, 4*k));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec((1-x)^3/((1-x)^4+x^8))

Formula

G.f.: (1-x)^3/((1-x)^4 + x^8).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) - a(n-8).

A348310 a(n) = Sum_{k=0..floor(n/10)} (-1)^k * binomial(n-5*k,5*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -5, -20, -55, -125, -251, -461, -791, -1286, -2001, -3001, -4356, -6121, -8281, -10626, -12500, -12340, -6885, 10110, 49875, 131626, 286921, 565781, 1044971, 1838626, 3110751, 5087561, 8064366, 12395461, 18444251, 26451625, 36249035, 46692715, 54618710
Offset: 0

Views

Author

Seiichi Manyama, Oct 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1, 0, 0, 0, 0, -1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 45] (* Amiram Eldar, Oct 11 2021 *)
  • PARI
    a(n) = sum(k=0, n\10, (-1)^k*binomial(n-5*k, 5*k));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec((1-x)^4/((1-x)^5+x^10))

Formula

G.f.: (1-x)^4/((1-x)^5 + x^10).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) - a(n-10).
Showing 1-2 of 2 results.