cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A348308 a(n) = Sum_{k=0..floor(n/6)} (-1)^k * binomial(n-3*k,3*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, -3, -9, -19, -34, -55, -82, -112, -136, -135, -75, 99, 469, 1147, 2269, 3970, 6325, 9235, 12231, 14166, 12771, 4076, -18244, -63424, -143695, -273223, -464779, -722439, -1027959, -1317915, -1448612, -1146827, 52219, 2870965, 8337370, 17769349, 32615514, 54022692, 81938664
Offset: 0

Views

Author

Seiichi Manyama, Oct 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1, 0, 0, -1}, {1, 1, 1, 1, 1, 1}, 45] (* Amiram Eldar, Oct 11 2021 *)
  • PARI
    a(n) = sum(k=0, n\6, (-1)^k*binomial(n-3*k, 3*k));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec((1-x)^2/((1-x)^3+x^6))

Formula

G.f.: (1-x)^2/((1-x)^3 + x^6).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) - a(n-6).

A348309 a(n) = Sum_{k=0..floor(n/8)} (-1)^k * binomial(n-4*k,4*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, -4, -14, -34, -69, -125, -209, -329, -493, -705, -955, -1199, -1324, -1092, -56, 2560, 8025, 18313, 36353, 66273, 113525, 184653, 286257, 422377, 589028, 763912, 888378, 837502, 372835, -928725, -3776537, -9302337, -19226889, -36034869, -63099331, -104630831, -165212760
Offset: 0

Views

Author

Seiichi Manyama, Oct 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, -6, 4, -1, 0, 0, 0, -1}, {1, 1, 1, 1, 1, 1, 1, 1}, 45] (* Amiram Eldar, Oct 11 2021 *)
  • PARI
    a(n) = sum(k=0, n\8, (-1)^k*binomial(n-4*k, 4*k));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec((1-x)^3/((1-x)^4+x^8))

Formula

G.f.: (1-x)^3/((1-x)^4 + x^8).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) - a(n-8).
Showing 1-2 of 2 results.