A348313 Primes q such that q^3+r^5+s^7 is also prime, where q,r,s are consecutive primes.
5, 11, 13, 71, 73, 97, 149, 223, 229, 283, 337, 353, 401, 409, 577, 827, 887, 1051, 1277, 1321, 1489, 1543, 1627, 1787, 1931, 2237, 2467, 2903, 3137, 3181, 3559, 3917, 4243, 4357, 4363, 4441, 4583, 4723, 4933, 5113, 5693, 5839, 5857, 6007, 6043, 6053, 6121
Offset: 1
Keywords
Examples
5 is a term because 5^3+7^5+11^7 = 19504103 is prime; 11 is a term because 11^3+13^5+17^7 = 410711297 is prime.
Programs
-
Mathematica
Select[Partition[Select[Range[6000], PrimeQ], 3, 1], PrimeQ[#[[1]]^3 + #[[2]]^5 + #[[3]]^7] &][[;; , 1]] (* Amiram Eldar, Oct 11 2021 *)
-
PARI
isok(p) = if (isprime(p), my(q=nextprime(p+1), r=nextprime(q+1)); isprime(p^3+q^5+r^7)); \\ Michel Marcus, Oct 11 2021
-
Sage
def Q(x): if Primes().unrank(x)^3+Primes().unrank(x+1)^5+Primes().unrank(x+2)^7 in Primes(): return Primes().unrank(x) A348313 = [Q(x) for x in range(0,10^3) if Q(x)!=None]
Comments