cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348313 Primes q such that q^3+r^5+s^7 is also prime, where q,r,s are consecutive primes.

Original entry on oeis.org

5, 11, 13, 71, 73, 97, 149, 223, 229, 283, 337, 353, 401, 409, 577, 827, 887, 1051, 1277, 1321, 1489, 1543, 1627, 1787, 1931, 2237, 2467, 2903, 3137, 3181, 3559, 3917, 4243, 4357, 4363, 4441, 4583, 4723, 4933, 5113, 5693, 5839, 5857, 6007, 6043, 6053, 6121
Offset: 1

Views

Author

Dumitru Damian, Oct 11 2021

Keywords

Comments

Exponent values (3,5,7) given by the prime triplet of the form p, p+2, p+4.

Examples

			5 is a term because 5^3+7^5+11^7 = 19504103 is prime;
11 is a term because 11^3+13^5+17^7 = 410711297 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Partition[Select[Range[6000], PrimeQ], 3, 1], PrimeQ[#[[1]]^3 + #[[2]]^5 + #[[3]]^7] &][[;; , 1]] (* Amiram Eldar, Oct 11 2021 *)
  • PARI
    isok(p) = if (isprime(p), my(q=nextprime(p+1), r=nextprime(q+1)); isprime(p^3+q^5+r^7)); \\ Michel Marcus, Oct 11 2021
  • Sage
    def Q(x):
        if Primes().unrank(x)^3+Primes().unrank(x+1)^5+Primes().unrank(x+2)^7 in Primes():
           return Primes().unrank(x)
    A348313 = [Q(x) for x in range(0,10^3) if Q(x)!=None]