A348364 Number of vertices on the axis of symmetry of the symmetric representation of sigma(n).
2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1
Offset: 1
Keywords
Examples
For n = 2, 6 and 10 the symmetric representation of sigma(n) respectively looks like this: . . _ _ _ . _| | | | | | . 2 |_ _| | | | | . _ _| | | | . | _| | | . _ _ _| _| _ _| | . 6 |_ _ _ _| | _ _| . _ _|_| . | _| . _ _ _ _ _| | . 10 |_ _ _ _ _ _| . For n = 2 there are two vertices on the axis of symmetry hence the symmetric representation of sigma(2) has an odd number of parts and 2 is a number that have middle divisors. The distance between both vertices divided by sqrt(2) equals the number of middle divisors of 2, that is A067742(2) = 1. For n = 6 there are two vertices on the axis of symmetry so the symmetric representation of sigma(6) has an odd number of parts and 6 is a number that have middle divisors. The distance between both vertices divided by sqrt(2) equals the number of middle divisors of 6, that is A067742(6) = 2. For n = 10 there is only one vertex on the axis of symmetry hence the symmetric representation of sigma(10) has an even number of parts and 10 is a number that have middle no divisors, so A067742(10) = 0.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
Mathematica
a[n_] := 1 + Boole[DivisorSum[n, 1 &, n/2 <= #^2 < 2*n &] > 0]; Array[a, 100] (* Amiram Eldar, Oct 17 2021 *)
-
PARI
A347950(n) = ((sumdiv(n, d, my(d2 = d^2); (n/2 < d2) && (d2 <= n<<1))) > 0); \\ From A347950 A348364(n) = (1+A347950(n)); \\ Antti Karttunen, Dec 13 2021
Comments