cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348384 Heinz numbers of integer partitions whose length is 2/3 their sum.

Original entry on oeis.org

1, 6, 36, 40, 216, 224, 240, 1296, 1344, 1408, 1440, 1600, 6656, 7776, 8064, 8448, 8640, 8960, 9600, 34816, 39936, 46656, 48384, 50176, 50688, 51840, 53760, 56320, 57600, 64000, 155648, 208896, 239616, 266240, 279936, 290304, 301056, 304128, 311040, 315392
Offset: 1

Views

Author

Gus Wiseman, Nov 13 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose sum of prime indices is 3/2 their number. Counting the partitions with these Heinz numbers gives A035377(n) = A000041(n/3) if n is a multiple of 3, otherwise 0.

Examples

			The terms and their prime indices begin:
     1: {}
     6: {1,2}
    36: {1,1,2,2}
    40: {1,1,1,3}
   216: {1,1,1,2,2,2}
   224: {1,1,1,1,1,4}
   240: {1,1,1,1,2,3}
  1296: {1,1,1,1,2,2,2,2}
  1344: {1,1,1,1,1,1,2,4}
  1408: {1,1,1,1,1,1,1,5}
  1440: {1,1,1,1,1,2,2,3}
  1600: {1,1,1,1,1,1,3,3}
  6656: {1,1,1,1,1,1,1,1,1,6}
  7776: {1,1,1,1,1,2,2,2,2,2}
		

Crossrefs

These partitions are counted by A035377.
Rounding down gives A348550 or A347452, counted by A108711 or A119620.
A000041 counts integer partitions.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344606 counts alternating permutations of prime factors.

Programs

  • Mathematica
    Select[Range[1000],2*Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]==3*PrimeOmega[#]&]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
    isA348384(n) = (A056239(n)==(3/2)*bigomega(n)); \\ Antti Karttunen, Nov 22 2021

Formula

The sequence contains n iff A056239(n) = 3*A001222(n)/2. Here, A056239 adds up prime indices, while A001222 counts them with multiplicity.
Intersection of A028260 and A347452.