A348384 Heinz numbers of integer partitions whose length is 2/3 their sum.
1, 6, 36, 40, 216, 224, 240, 1296, 1344, 1408, 1440, 1600, 6656, 7776, 8064, 8448, 8640, 8960, 9600, 34816, 39936, 46656, 48384, 50176, 50688, 51840, 53760, 56320, 57600, 64000, 155648, 208896, 239616, 266240, 279936, 290304, 301056, 304128, 311040, 315392
Offset: 1
Keywords
Examples
The terms and their prime indices begin: 1: {} 6: {1,2} 36: {1,1,2,2} 40: {1,1,1,3} 216: {1,1,1,2,2,2} 224: {1,1,1,1,1,4} 240: {1,1,1,1,2,3} 1296: {1,1,1,1,2,2,2,2} 1344: {1,1,1,1,1,1,2,4} 1408: {1,1,1,1,1,1,1,5} 1440: {1,1,1,1,1,2,2,3} 1600: {1,1,1,1,1,1,3,3} 6656: {1,1,1,1,1,1,1,1,1,6} 7776: {1,1,1,1,1,2,2,2,2,2}
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range[1000],2*Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]==3*PrimeOmega[#]&]
-
PARI
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); } isA348384(n) = (A056239(n)==(3/2)*bigomega(n)); \\ Antti Karttunen, Nov 22 2021
Comments