A348388 Irregular triangle read by rows: T(n, k) = floor((n-k)/k), for k = 1, 2, ..., floor(n/2) and n >= 2.
1, 2, 3, 1, 4, 1, 5, 2, 1, 6, 2, 1, 7, 3, 1, 1, 8, 3, 2, 1, 9, 4, 2, 1, 1, 10, 4, 2, 1, 1, 11, 5, 3, 2, 1, 1, 12, 5, 3, 2, 1, 1, 13, 6, 3, 2, 1, 1, 1, 14, 6, 4, 2, 2, 1, 1, 15, 7, 4, 3, 2, 1, 1, 1, 16, 7, 4, 3, 2, 1, 1, 1, 17, 8, 5, 3, 2, 2, 1, 1, 1, 18, 8, 5, 3, 2, 2, 1, 1, 1, 19, 9, 5, 4, 3, 2, 1, 1, 1, 1
Offset: 2
Examples
The irregular triangle T(n, k) begins: n\k 1 2 3 4 5 6 7 8 9 10 ... ------------------------------ 2: 1 3: 2 4: 3 1 5: 4 1 6: 5 2 1 7: 6 2 1 8: 7 3 1 1 9: 8 3 2 1 10: 9 4 2 1 1 11: 10 4 2 1 1 12: 11 5 3 2 1 1 13: 12 5 3 2 1 1 14: 13 6 3 2 1 1 1 15: 14 6 4 2 2 1 1 16: 15 7 4 3 2 1 1 1 17: 16 7 4 3 2 1 1 1 18: 17 8 5 3 2 2 1 1 1 19: 18 8 5 3 2 2 1 1 1 20: 19 9 5 4 3 2 1 1 1 1 ...
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 2..10101
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Floor[(n - k)/k]; Table[T[n, k], {n, 2, 20}, {k, 1, Floor[n/2]}] // Flatten (* Amiram Eldar, Nov 02 2021 *)
-
Python
def A348388row(n): return [(n - k) // k for k in range(1, 1 + n // 2)] for n in range(2, 21): print(A348388row(n)) # Peter Luschny, Nov 05 2021
Formula
T(n, k) = floor((n-k)/k), for k = 1, 2, ..., floor(n/2) and n >= 2.
G.f. of column k: G(k, x) = x^(2*k)/((1 - x)*(1 - x^k)).
Comments