cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348396 Number of ways to reach n by starting with 1 and repeatedly adding any positive integer or multiplying by any integer greater than 1.

Original entry on oeis.org

1, 2, 4, 10, 18, 42, 78, 168, 328, 672, 1324, 2706, 5354, 10788, 21518, 43194, 86208, 172792, 345208, 691118, 1381616, 2764476, 5527626, 11058184, 22113454, 44232246, 88459468, 176929482, 353848086, 707718428, 1415414600, 2830872574, 5661703102, 11323491086
Offset: 1

Views

Author

Michael R Peake, Jan 25 2022

Keywords

Examples

			For n = 3 the a(3) = 4 solutions are 1 + 2, (1 + 1) + 1, (1*2) + 1, 1*3.
		

Crossrefs

Programs

  • MATLAB
    a(1)=1; for n=2:20, a(n)=sum(a(1:n-1))+sum(a(find(~rem(n,1:n-1)))); end;
    
  • Maple
    a:= proc(n) option remember; uses numtheory; `if`(n=1, 1,
          add(a(n-j), j=1..n-1)+add(a(n/d), d=divisors(n) minus {1}))
        end:
    seq(a(n), n=1..34);  # Alois P. Heinz, Jan 25 2022
  • Mathematica
    a[n_] := a[n] = If[n == 1, 1, Sum[a[n - j], {j, 1, n - 1}] +
         Sum[a[n/d], {d, Divisors[n] ~Complement~ {1}}]];
    Table[a[n], {n, 1, 34}] (* Jean-François Alcover, May 14 2022, after Alois P. Heinz *)
  • PARI
    seq(n)={my(a=vector(n), s=1); a[1]=s; for(n=2, n, a[n] = s + sumdiv(n, d, a[d]); s += a[n]); a} \\ Andrew Howroyd, Jan 25 2022
  • Python
    from functools import cache
    @cache
    def a(n): return 1 if n == 1 else 1 + sum(a(i) for i in range(1, n)) + sum(a(i) for i in range(2, n) if n%i == 0)
    print([a(n) for n in range(1, 34)]) # Michael S. Branicky, Jan 25 2022