A348397 a(n) = Sum_{d|n} sigma_[n-d](d), where sigma_[k](n) is the sum of the k-th powers of the divisors of n.
1, 3, 3, 9, 3, 50, 3, 343, 734, 3388, 3, 133959, 3, 827646, 10297073, 33640713, 3, 2579172499, 3, 44822639761, 678610493345, 285312719194, 3, 393067887861756, 95367431640630, 302875123369476, 150094918113956098, 569940024192528003, 3, 105474401758856279784, 3
Offset: 1
Keywords
Examples
a(6) = 50; a(6) = sigma_[6-1](1) + sigma_[6-2](2) + sigma_[6-3](3) + sigma_[6-6](6) = (1^5) + (1^4 + 2^4) + (1^3 + 3^3) + (6^0 + 6^0 + 6^0 + 6^0) = 50.
Links
- Michel Marcus, Table of n, a(n) for n = 1..500
Crossrefs
Cf. A321141.
Programs
-
Mathematica
a[n_] := DivisorSum[n, DivisorSigma[n - #, #] &]; Array[a, 30] (* Amiram Eldar, Oct 17 2021 *)
-
PARI
a(n) = sumdiv(n, d, sigma(d, n-d)); \\ Michel Marcus, Oct 18 2021
Formula
a(n) = 3 iff n is prime. - Bernard Schott, Oct 17 2021