A348398 a(n) = Sum_{d|n} sigma_[n/d](d), where sigma_[k](n) is the sum of the k-th powers of the divisors of n.
1, 4, 5, 13, 7, 32, 9, 54, 42, 78, 13, 299, 15, 204, 395, 647, 19, 1626, 21, 2881, 2565, 2208, 25, 17070, 3158, 8406, 20482, 35607, 31, 116964, 33, 136104, 178529, 131418, 94983, 1112928, 39, 524712, 1596579, 2533908, 43, 7283718, 45, 8405995, 16364934, 8389212, 49, 78586033, 823602, 43423962
Offset: 1
Keywords
Examples
a(8) = 54; a(8) = sigma_[8/1](1) + sigma_[8/2](2) + sigma_[8/4](4) + sigma_[8/8](8) = (1^8) + (1^4 + 2^4) + (1^2 + 2^2 + 4^2) + (1^1 + 2^1 + 4^1 + 8^1) = 54.
Crossrefs
Cf. A321141.
Programs
-
Mathematica
a[n_] := DivisorSum[n, DivisorSigma[n/#, #] &]; Array[a, 50] (* Amiram Eldar, Oct 17 2021 *)
-
PARI
a(n) = sumdiv(n, d, sigma(d, n/d)); \\ Michel Marcus, Oct 18 2021