A348411 Numbers whose divisors have a harmonic mean with a denominator 2.
3, 15, 42, 84, 135, 308, 420, 546, 1428, 1488, 1890, 2295, 2660, 3780, 6210, 7440, 9424, 12180, 13392, 18018, 20832, 24384, 24570, 43152, 43400, 64260, 66960, 77490, 90090, 98420, 121920, 127710, 155610, 200340, 204600, 227664, 316992, 348688, 353400, 461776, 483210
Offset: 1
Keywords
Examples
3 is a term since the harmonic mean of its divisors, {1, 3}, is 3/2. 15 is a term since the harmonic mean of its divisors, {1, 3, 5, 15}, is 5/2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..310
Programs
-
Maple
filter:= proc(n) local L,h; L:= map(t->1/t,numtheory:-divisors(n)); denom(nops(L)/convert(L,`+`))=2; end proc: select(filter, [$1..10^6]); # Robert Israel, Oct 17 2021
-
Mathematica
Select[Range[10^5], Denominator[DivisorSigma[0, #]/DivisorSigma[-1, #]] == 2 &] Select[Range[500000],Denominator[HarmonicMean[Divisors[#]]]==2&] (* Harvey P. Dale, Apr 06 2023 *)
-
PARI
isok(m) = my(d=divisors(m)); denominator(#d/sum(k=1, #d, 1/d[k])) == 2; \\ Michel Marcus, Oct 18 2021
-
Python
from sympy import gcd, divisor_sigma A348411_list = [n for n in range(1,10**3) if (lambda x, y: 2*gcd(x,y*n)==x)(divisor_sigma(n),divisor_sigma(n,0))] # Chai Wah Wu, Oct 20 2021
Comments