A348419 Triangular table read by rows: T(n,k) is the k-th entry of the main diagonal of the inverse Hilbert matrix of order n.
1, 4, 12, 9, 192, 180, 16, 1200, 6480, 2800, 25, 4800, 79380, 179200, 44100, 36, 14700, 564480, 3628800, 4410000, 698544, 49, 37632, 2857680, 40320000, 133402500, 100590336, 11099088, 64, 84672, 11430720, 304920000, 2134440000, 4249941696, 2175421248, 176679360
Offset: 1
Examples
The inverse Hilbert matrix of order 4 is given by [ 16 -120 240 -140] [-120 1200 -2700 1680] [ 240 -2700 6480 -4200] [-140 1680 -4200 2800]. Hence the 4th row is 16, 1200, 6480, 2800. The first 8 rows of the table are: 1, 4, 12, 9, 192, 180, 16, 1200, 6480, 2800, 25, 4800, 79380, 179200, 44100, 36, 14700, 564480, 3628800, 4410000, 698544, 49, 37632, 2857680, 40320000, 133402500, 100590336, 11099088, 64, 84672, 11430720, 304920000, 2134440000, 4249941696, 2175421248, 176679360, ...
Links
- Jianing Song, Table of n, a(n) for n = 1..5050 (first 100 rows)
- Eric Weisstein's World of Mathematics, Hilbert Matrix
Crossrefs
Programs
-
Maple
T:= n-> (M-> seq(M[i, i], i=1..n))(1/LinearAlgebra[HilbertMatrix](n)): seq(T(n), n=1..8); # Alois P. Heinz, Jun 19 2022
-
Mathematica
T[n_, k_] := Inverse[HilbertMatrix[n]][[k, k]]; Table[T[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Amiram Eldar, Oct 18 2021 *)
-
PARI
T(n,k) = (1/mathilbert(n))[k,k]