cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348436 Triangle read by rows. T(n,k) is the number of labeled threshold graphs on n vertices with k components, for 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 4, 3, 1, 23, 16, 6, 1, 166, 115, 40, 10, 1, 1437, 996, 345, 80, 15, 1, 14512, 10059, 3486, 805, 140, 21, 1, 167491, 116096, 40236, 9296, 1610, 224, 28, 1, 2174746, 1507419, 522432, 120708, 20916, 2898, 336, 36, 1, 31374953, 21747460, 7537095, 1741440, 301770, 41832, 4830, 480, 45, 1
Offset: 1

Views

Author

David Galvin, Oct 18 2021

Keywords

Comments

The class of threshold graphs is the smallest class of graphs that includes K1 and is closed under adding isolated vertices and dominating vertices.

Examples

			Triangle begins:
         1;
         1,        1;
         4,        3,       1;
        23,       16,       6,       1;
       166,      115,      40,      10,      1;
      1437,      996,     345,      80,     15,     1;
     14512,    10059,    3486,     805,    140,    21,    1;
    167491,   116096,   40236,    9296,   1610,   224,   28,   1;
   2174746,  1507419,  522432,  120708,  20916,  2898,  336,  36,  1;
  31374953, 21747460, 7537095, 1741440, 301770, 41832, 4830, 480, 45, 1;
...
		

Crossrefs

Cf. A005840 (row sums), A317057 (column k=1), A053525.

Programs

  • Maple
    T := (n, k) -> `if`(n = k, 1, binomial(n, k-1)*A053525(n-k+1)):
    for n from 1 to 10 do seq(T(n, k), k=1..n) od; # Peter Luschny, Oct 24 2021
  • Mathematica
    eulerian[0, 0] := 1; eulerian[n_, m_] := eulerian[n, m] =
    Sum[((-1)^k)*Binomial[n + 1, k]*((m + 1 - k)^n), {k, 0, m + 1}];
    (* t[n] counts the labeled threshold graphs on n vertices *)
    t[0] = 1; t[1] = 1;
    t[n_] := t[n] = Sum[(n - k)*eulerian[n - 1, k - 1]*(2^k), {k, 1, n - 1}];
    T[1, 1] := 1; T[n_, 1] := T[n, 1] = (1/2)*t[n]; T[n_, n_] := T[n, n] = 1;
    T[n_, k_] := T[n, k] = Binomial[n, k - 1]*T[n - k + 1, 1];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten

Formula

T(1,1) = 1; for n >= 2, T(n,1) = A005840(n)/2; for n >= 3 and 2 <= k <= n-1, T(n,k) = binomial(n,k-1)*T(n-k+1,1); and for n >= 2, T(n,n)=1.
T(n, k) = binomial(n, k-1)*A053525(n - k + 1) if k != n, otherwise 1. - Peter Luschny, Oct 24 2021