A348452
Irregular triangle read by rows: T(n,k) (n >= 1, 1 <= k <= n^2) is the number of ways to tile an n X n chessboard with k rook-connected polyominoes of equal area.
Original entry on oeis.org
1, 1, 2, 0, 1, 1, 0, 10, 0, 0, 0, 0, 0, 1, 1, 70, 0, 117, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 4006, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 80518, 264500, 442791, 0, 451206, 0, 0, 178939, 0, 0, 80092, 0, 0, 0, 0, 0, 6728, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 158753814, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
The first seven rows of the triangle are:
1,
1, 2, 0, 1,
1, 0, 10, 0, 0, 0, 0, 0, 1,
1, 70, 0, 117, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 4006, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 80518, 264500, 442791, 0, 451206, 0, 0, 178939, 0, 0, 80092, 0, 0, 0, 0, 0, 6728, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 158753814, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
...
The domino is the only polyomino of area 2, and the 36 ways to tile a 4 X 4 square with dominoes are shown in one of the links.
- Moon Duchin, Graphs, Geometry and Gerrymandering”, Talk at Celebration of Mind Conference, Oct 23 2021.
- P. W. Kasteleyn, The Statistics of Dimers on a Lattice, Physica, 27 (1961), 1209-1225.
- P. W. Kasteleyn, Dimer statistics and phase transitions, J. Mathematical Phys. 4 1963 287-293. MR0153427 (27 #3394).
- Zach Schutzman and MGGG, The Known Sizes of Grid Metagraphs, Metric Geometry and Gerrymandering Group (MGGG), Boston, Oct 01 2018.
- N. J. A. Sloane, Illustration for T(3,3) = 10
- N. J. A. Sloane, Illustration for T(4,2) = 70 [Labels give code, B = length of internal boundary, C = number of internal corners, G = group order, # = number of this type. Note that (B,C) determines the type]
- N. J. A. Sloane, Illustration for T(4,8) = 36 [Slide from an old talk of mine]
- N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences: An illustrated guide with many unsolved problems, Guest Lecture given in Doron Zeilberger's Experimental Mathematics Math640 Class, Rutgers University, Spring Semester, Apr 28 2022: Slides; Slides (an alternative source).
More than the usual number of terms are given, in order to show the first seven rows.
A348453
Irregular triangle read by rows: T(n,k) (n >= 1, 1 <= k <= number of divisors of n^2) is the number of ways to tile an n X n chessboard with d_k rook-connected polyominoes of equal area, where d_k is the k-th divisor of n^2.
Original entry on oeis.org
1, 1, 2, 1, 1, 10, 1, 1, 70, 117, 36, 1, 1, 4006, 1, 1, 80518, 264500, 442791, 451206, 178939, 80092, 6728, 1, 1, 158753814, 1, 7157114189
Offset: 1
The first eight rows of the triangle are:
1,
1, 2, 1,
1, 10, 1,
1, 70, 117, 36, 1,
1, 4006, 1,
1, 80518, 264500, 442791, 451206, 178939, 80092, 6728, 1,
1, 158753814, 1,
1, 7157114189, ?, 187497290034, ?, ?, 1,
...
The corresponding divisors d_k are:
1,
1, 2, 4,
1, 3, 9,
1, 2, 4, 8, 16,
1, 5, 25,
...
The domino is the only polyomino of area 2, and the 36 ways to tile a 4 X 4 square with dominoes are shown in one of the links.
- Moon Duchin, Graphs, Geometry and Gerrymandering”, Talk at Celebration of Mind Conference, Oct 23 2021.
- P. W. Kasteleyn, The Statistics of Dimers on a Lattice, Physica, 27 (1961), 1209-1225.
- P. W. Kasteleyn, Dimer statistics and phase transitions, J. Mathematical Phys. 4 1963 287-293. MR0153427 (27 #3394).
- Zach Schutzman and MGGG, The Known Sizes of Grid Metagraphs, Metric Geometry and Gerrymandering Group (MGGG), Boston, Oct 01 2018.
- N. J. A. Sloane, Illustration for T(3,2) = 10
- N. J. A. Sloane, Illustration for T(4,2) = 70 [Labels give code, B = length of internal boundary, C = number of internal corners, G = group order, # = number of this type. Note that (B,C) determines the type]
- N. J. A. Sloane, Illustration for T(4,4) = 36 [Slide from an old talk of mine]
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 21.
A348454
Irregular triangle read by rows: T(n,k) (n >= 1, 1 <= k <= n^2) is the number of ways to tile an n X n chessboard with rook-connected polyominoes of area k.
Original entry on oeis.org
1, 1, 2, 0, 1, 1, 0, 10, 0, 0, 0, 0, 0, 1, 1, 36, 0, 117, 0, 0, 0, 70, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 4006, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6728, 80092, 178939, 0, 451206, 0, 0, 442791, 0, 0, 264500, 0, 0, 0, 0, 0, 80518, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 158753814, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Triangle begins:
1,
1, 2, 0, 1,
1, 0, 10, 0, 0, 0, 0, 0, 1,
1, 36, 0, 117, 0, 0, 0, 70, 0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 4006, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 6728, 80092, 178939, 0, 451206, 0, 0, 442791, 0, 0, 264500, 0, 0, 0, 0, 0, 80518, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 158753814, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
...
More than the usual number of terms are given, in order to show the first seven rows.
Showing 1-4 of 4 results.
Comments