A348456 Number of ways to dissect a 2*n X 2*n chessboard into two polyominoes each of area 2*n^2.
1, 2, 70, 80518, 7157114189, 49852157614583644, 28289358593043414725944353, 1335056579423080371186456888543732162, 5288157175943649955880910966508435029578848399795, 1768514227824943648668138153226998430209626836775021539911012000, 50126261987194138333095266040242179892262270498222242227767710277119489194126252, 120727080026653995683405108506109122788592972611035310673809853406496349171003311517916839962975062
Offset: 0
Links
- Anthony J. Guttmann and Iwan Jensen, The gerrymander sequence, or A348456, arXiv:2211.14482 [math.CO], 2022.
- Manuel Kauers, D-Finiteness: A Success Story, Experimental Math., Johannes Kepler Univ. (Austria, 2025). See p. 6.
- Manuel Kauers, Christoph Koutschan, and George Spahn, A348456(4) = 7157114189, arXiv:2209.01787 [math.CO], 2022.
- Manuel Kauers, Christoph Koutschan, and George Spahn, How Does the Gerrymander Sequence Continue?, J. Int. Seq., Vol. 25 (2022), Article 22.9.7.
- N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences: An illustrated guide with many unsolved problems, Guest Lecture given in Doron Zeilberger's Experimental Mathematics Math640 Class, Rutgers University, Spring Semester, Apr 28 2022: Slides; Slides (an alternative source).
- Doron Zeilberger, Challenge to Manuel Kauers and his computer.
Crossrefs
Extensions
Added a(5)-a(7) (from the Kauers et al. reference), Joerg Arndt, Sep 07 2022
a(8)-a(11) from Guttmann and Jensen (2022).
a(0)=1 prepended by Alois P. Heinz, Dec 06 2022
Comments