cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A260701 a(n) = (-3*(-1)^n + Sum_{k>=0} A000108(k)*k^n/6^k)/sqrt(3), where A000108 are Catalan numbers.

Original entry on oeis.org

-1, 2, -1, 5, 20, 197, 2219, 30620, 496565, 9265037, 195535514, 4605925535, 119796721835, 3410051954402, 105449267146859, 3520120318516625, 126168879827914580, 4832661370036811417, 197001989531658791879, 8515772839409988885140, 389080859811496699020425
Offset: 0

Views

Author

Vladimir Reshetnikov, Nov 16 2015

Keywords

Examples

			For n = 5, Sum_{k>=0} A000108(k)*k^5/6^k = 197*sqrt(3) - 3, so a(5) = 197.
		

Crossrefs

Programs

  • Mathematica
    Table[(-3 (-1)^n + Sum[CatalanNumber[k] k^n/6^k, {k, 0, Infinity}])/Sqrt[3], {n, 0, 20}]
  • PARI
    vector(20, n, n--; round((suminf(k=0, binomial(2*k,k)/(k+1)*k^n/6^k) - 3*(-1)^n)/sqrt(3))) \\ Altug Alkan, Nov 16 2015
    
  • PARI
    N=20; x='x+O('x^N); Vec(serlaplace(-sqrt(exp(-x)*(-2+3*exp(-x))))) \\ Seiichi Manyama, Oct 21 2021

Formula

Sum_{k >= 0} A000108(k)*k^n/6^k = a(n)*sqrt(3) + 3*(-1)^n.
a(n) ~ sqrt(2) * n^(n-1) / (sqrt(3) * exp(n) * log(3/2)^(n-1/2)). - Vaclav Kotesovec, Nov 17 2015
E.g.f.: -sqrt( exp(-x) * (-2+3*exp(-x)) ). - Seiichi Manyama, Oct 21 2021

A260902 a(n) = (-5*(-1)^n + Sum_{k>=0} 2*A000108(k)*k^n/5^k)/sqrt(5), where A000108 are Catalan numbers.

Original entry on oeis.org

-1, 3, 1, 27, 289, 4683, 95761, 2382747, 69870529, 2359997163, 90239163121, 3853391348667, 181765659243169, 9386568200722443, 526713953100688081, 31912283163641549787, 2076293242327577102209, 144382074825232693748523, 10686433228580787658046641
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 17 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(-5*(-1)^n + Sum[2*CatalanNumber[k] k^n/5^k, {k, 0, Infinity}]) / Sqrt[5], {n, 0, 20}]
  • PARI
    N=20; x='x+O('x^N); Vec(serlaplace(-sqrt(exp(-x)*(-4+5*exp(-x))))) \\ Seiichi Manyama, Oct 21 2021

Formula

a(n) ~ 2^(3/2) * n^(n-1) / (sqrt(5) * exp(n) * log(5/4)^(n-1/2)).
E.g.f.: -sqrt( exp(-x) * (-4+5*exp(-x)) ). - Seiichi Manyama, Oct 21 2021
Showing 1-2 of 2 results.