cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A260902 a(n) = (-5*(-1)^n + Sum_{k>=0} 2*A000108(k)*k^n/5^k)/sqrt(5), where A000108 are Catalan numbers.

Original entry on oeis.org

-1, 3, 1, 27, 289, 4683, 95761, 2382747, 69870529, 2359997163, 90239163121, 3853391348667, 181765659243169, 9386568200722443, 526713953100688081, 31912283163641549787, 2076293242327577102209, 144382074825232693748523, 10686433228580787658046641
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 17 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(-5*(-1)^n + Sum[2*CatalanNumber[k] k^n/5^k, {k, 0, Infinity}]) / Sqrt[5], {n, 0, 20}]
  • PARI
    N=20; x='x+O('x^N); Vec(serlaplace(-sqrt(exp(-x)*(-4+5*exp(-x))))) \\ Seiichi Manyama, Oct 21 2021

Formula

a(n) ~ 2^(3/2) * n^(n-1) / (sqrt(5) * exp(n) * log(5/4)^(n-1/2)).
E.g.f.: -sqrt( exp(-x) * (-4+5*exp(-x)) ). - Seiichi Manyama, Oct 21 2021

A348468 Expansion of e.g.f. sqrt(exp(x)*(2-exp(x))).

Original entry on oeis.org

1, 0, -1, -3, -10, -45, -271, -2058, -18775, -199335, -2410516, -32683563, -490870315, -8087188200, -144994236661, -2810079139143, -58536519252130, -1304198088413265, -30946462816602331, -779104979758256298, -20742005411397108595, -582214473250983046155, -17184302765073000634276
Offset: 0

Views

Author

Michel Marcus, Oct 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    m = 22; Range[0, m]! * CoefficientList[Series[Sqrt[Exp[x]*(2 - Exp[x])], {x, 0, m}], x] (* Amiram Eldar, Oct 19 2021 *)
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(sqrt(exp(x)*(2-exp(x)))))

Formula

a(n) ~ -sqrt(2) * n^(n-1) / (log(2)^(n - 1/2) * exp(n)). - Vaclav Kotesovec, Oct 21 2021
Showing 1-2 of 2 results.