cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348491 Positive numbers whose square starts and ends with exactly one 9.

Original entry on oeis.org

3, 97, 303, 307, 313, 953, 957, 963, 967, 973, 977, 983, 987, 993, 3003, 3007, 3013, 3017, 3023, 3027, 3033, 3037, 3043, 3047, 3053, 3057, 3063, 3067, 3073, 3077, 3083, 3087, 3093, 3097, 3103, 3107, 3113, 3117, 3123, 3127, 3133, 3137, 3143, 9487, 9493, 9497, 9503, 9507, 9513, 9517
Offset: 1

Views

Author

Bernard Schott, Nov 02 2021

Keywords

Comments

When a square ends with 9, it ends with only one 9.
From Marius A. Burtea, Nov 02 2021 : (Start)
The sequence is infinite because the numbers 303, 3003, 30003, ..., 3*(10^k + 1), k >= 2, are terms with squares 91809, 9018009, 900180009, 90001800009, ... 9*(10^(2*k) + 2*10^k + 1), k >= 2.
Numbers 97, 967, 9667, 96667, 966667, ..., (29*10^n + 1) / 3, k >= 1, are terms and have no digits 0, because their squares are 9409, 935089, 93450889, 9344508889, 934445088889, ...
Also 963, 9663, 96663, 966663, 9666663, 96666663, ... (29*10^k - 11) / 3, k >= 2, are terms and have no digits 0, because their squares are 927369, 93373569, 9343735569, 934437355569, 93444373555569, 9344443735555569, ... (End)

Examples

			97^2 = 9409, hence 97 is a term.
997^2 = 994009, hence  997 is not a term.
		

Crossrefs

Subsequence of A305719, A063226, and A045863.
Cf. A017377, A045863, A273374 (squares ending with 9).
Similar to: A348487 (k=1), A348488 (k=4), A348489 (k=5), A348490 (k=6), this sequence (k=9).

Programs

  • Magma
    [3] cat [n:n in [4..9600]|Intseq(n*n)[1] eq 9 and Intseq(n*n)[#Intseq(n*n)] eq 9]; // Marius A. Burtea, Nov 02 2021
    
  • Mathematica
    Join[{3}, Select[Range[10, 10^4], (d = IntegerDigits[#^2])[[1]] == d[[-1]] == 9 && d[[2]] != 9 &]] (* Amiram Eldar, Nov 02 2021 *)
  • PARI
    isok(k) = my(d=digits(sqr(k))); (d[1]==9) && (d[#d]==9) && if (#d>2, (d[2]!=9) && (d[#d-1]!=9), 1); \\ Michel Marcus, Nov 03 2021
    
  • PARI
    list(lim)=my(v=List([3])); for(d=2, 2*#digits(lim\=1), my(s=sqrtint(9*10^(d-1)-1)+1); s+=[3,2,1,0,3,2,1,0,5,4][s%10+1]; forstep(n=s, min(sqrtint(10^d-10^(d-2)-1), lim), if(s%10==3, [4,6], [6,4]), listput(v, n))); Vec(v) \\ Charles R Greathouse IV, Nov 03 2021
  • Python
    from itertools import count, takewhile
    def ok(n):
      s = str(n*n); return len(s.rstrip("9")) == len(s.lstrip("9")) == len(s)-1
    def aupto(N):
      r = takewhile(lambda x: x<=N, (10*i+d for i in count(0) for d in [3, 7]))
      return [k for k in r if ok(k)]
    print(aupto(9517)) # Michael S. Branicky, Nov 02 2021