cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348519 Tetraphobe or 4-phobe numbers: integers that are not tetraphile numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 24, 25, 26, 32, 48
Offset: 1

Views

Author

Bernard Schott, Oct 23 2021

Keywords

Comments

Tetraphile numbers are described in A348517.
The idea for this sequence comes from the French website Diophante (see link).
It is possible to generalize for "k-phile" or "k-phobe" numbers (see Crossrefs).
The set of k-phobe numbers is always finite, the smallest one is always 1; here, there exist 23 tetraphobe numbers and the largest one is 48.

Examples

			There are no 4 positive integers b_1 < b_2 < b_3 < b_4 such that b_1 divides b_2, b_2 divides b_3, b_3 divides b_4, and 17 = b_1 + b_2 + b_3 + b_4, hence 17 is a term.
		

Crossrefs

k-phile numbers: A160811 \ {5} (k=3), A348517 (k=4), A348518 (k=5).
k-phobe numbers: A019532 (k=3), this sequence (k=4), A348520 (k=5).

Programs

  • Mathematica
    Select[Range@48,Select[Select[IntegerPartitions[#,{4}],Length@Union@#==4&],And@@(IntegerQ/@Divide@@@Partition[#,2,1])&]=={}&] (* Giorgos Kalogeropoulos, Oct 24 2021 *)
  • PARI
    isok(k) = forpart(p=k, if (#Set(p) == 4, if (!(p[2] % p[1]) && !(p[3] % p[2]) && !(p[4] % p[3]), return(0))), , [4, 4]); return(1); \\ Michel Marcus, Nov 14 2021