A348519 Tetraphobe or 4-phobe numbers: integers that are not tetraphile numbers.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 24, 25, 26, 32, 48
Offset: 1
Examples
There are no 4 positive integers b_1 < b_2 < b_3 < b_4 such that b_1 divides b_2, b_2 divides b_3, b_3 divides b_4, and 17 = b_1 + b_2 + b_3 + b_4, hence 17 is a term.
Links
- Diophante, A496 - Pentaphiles et pentaphobes (in French).
Crossrefs
Programs
-
Mathematica
Select[Range@48,Select[Select[IntegerPartitions[#,{4}],Length@Union@#==4&],And@@(IntegerQ/@Divide@@@Partition[#,2,1])&]=={}&] (* Giorgos Kalogeropoulos, Oct 24 2021 *)
-
PARI
isok(k) = forpart(p=k, if (#Set(p) == 4, if (!(p[2] % p[1]) && !(p[3] % p[2]) && !(p[4] % p[3]), return(0))), , [4, 4]); return(1); \\ Michel Marcus, Nov 14 2021
Comments