A348536 Number of partitions of n into 3 parts that divide n.
0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0
Offset: 1
Examples
a(12) = 3 via 2 + 4 + 6 = 3 + 3 + 6 = 4 + 4 + 4. - _David A. Corneth_, Oct 08 2022
Links
Programs
-
Mathematica
Block[{c}, c[n_] := 1 - Ceiling[n] + Floor[n]; Array[Sum[Sum[c[#/j]*c[#/i]*c[#/(# - i - j)], {i, j, Floor[(# - j)/2]} ], {j, Floor[#/3]} ] &, 105]] (* Michael De Vlieger, Oct 21 2021 *) Table[Count[IntegerPartitions[n,{3}],?(Mod[n,#]=={0,0,0}&)],{n,100}] (* _Harvey P. Dale, Apr 07 2025 *)
-
PARI
a(n) = [0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3][(n-1)%12 + 1] \\ David A. Corneth, Oct 08 2022
-
PARI
a(n) = { my(d = divisors(n), res = 0); d = d[^#d]; forvec(x = vector(2, i, [1, #d]), s = d[x[1]] + d[x[2]]; if(n - s >= d[x[2]], if(n % (n - s) == 0, print([d[x[1]], d[x[2]], n-s]); res++ ) ) , 1 ); res } \\ David A. Corneth, Oct 08 2022
Formula
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} c(n/j) * c(n/i) * c(n/(n-i-j)), where c(n) = 1 - ceiling(n) + floor(n).
a(n + 12) = a(n) where n >= 1. - David A. Corneth, Oct 08 2022
Comments