A348537 Number of partitions of n into 3 parts whose largest part divides n.
0, 0, 1, 1, 0, 2, 0, 2, 1, 2, 0, 4, 0, 3, 1, 4, 0, 5, 0, 5, 1, 5, 0, 7, 0, 6, 1, 7, 0, 8, 0, 8, 1, 8, 0, 10, 0, 9, 1, 10, 0, 11, 0, 11, 1, 11, 0, 13, 0, 12, 1, 13, 0, 14, 0, 14, 1, 14, 0, 16, 0, 15, 1, 16, 0, 17, 0, 17, 1, 17, 0, 19, 0, 18, 1, 19, 0, 20, 0, 20, 1, 20, 0, 22, 0
Offset: 1
Keywords
Links
Crossrefs
Cf. A069905.
Programs
-
Mathematica
Array[Sum[Sum[(1 - Ceiling[#/(# - i - j)] + Floor[#/(# - i - j)]), {i, j, Floor[(# - j)/2]} ], {j, Floor[#/3]} ] &, 85] (* Michael De Vlieger, Oct 21 2021 *)
-
PARI
A348537(n) = sum(j=1,(n\3), sum(i=j,((n-j)\2), (1 - ceil(n/(n-i-j)) + floor(n/(n-i-j))))); \\ Antti Karttunen, Feb 18 2023
Formula
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (1 - ceiling(n/(n-i-j)) + floor(n/(n-i-j))).