A348539 Triangle T(n, m) = binomial(n+2, m)*binomial(n+2, n-m), read by rows.
1, 3, 3, 6, 16, 6, 10, 50, 50, 10, 15, 120, 225, 120, 15, 21, 245, 735, 735, 245, 21, 28, 448, 1960, 3136, 1960, 448, 28, 36, 756, 4536, 10584, 10584, 4536, 756, 36, 45, 1200, 9450, 30240, 44100, 30240, 9450, 1200, 45, 55, 1815, 18150, 76230, 152460, 152460, 76230, 18150, 1815, 55
Offset: 0
Examples
Triangle starts: [0] 1; [1] 3, 3; [2] 6, 16, 6; [3] 10, 50, 50, 10; [4] 15, 120, 225, 120, 15; [5] 21, 245, 735, 735, 245, 21; [6] 28, 448, 1960, 3136, 1960, 448, 28. ... Taylor series: 1 + 3*x*(y + 1) + 2*x^2*(3*y^2 + 8*y + 3) + 10*x^3*(y^3 + 5*y^2 + 5*y + 1) + 15*x^4 (y^4 + 8*y^3 + 15*y^2 + 8*y + 1) + O(x^5)
Programs
-
Maple
T := (n, k) -> binomial(n+2, k) * binomial(n+2, n-k): for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Oct 22 2021
-
Mathematica
T[n_, m_] := Binomial[n + 2, m] * Binomial[n + 2, n - m]; Table[T[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Amiram Eldar, Oct 22 2021 *)
-
Maxima
T(n,m):=binomial(n+2,m)*binomial(n+2,n-m);
Formula
G.f.: (x^2*y^2 - 2*x*y + x^2 - 2*x + 1)/(2*x^4*y^2*sqrt(x^2*y^2 + (-2*x^2-2*x)*y + x^2 - 2*x + 1)) + (x*y + x - 1)/(2*x^4*y^2).
G.f.: diff(N(x,y),x)*N(x,y)/(x*y^2), where N(x,y) is the g.f. of the Narayana numbers A001263.