cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348539 Triangle T(n, m) = binomial(n+2, m)*binomial(n+2, n-m), read by rows.

Original entry on oeis.org

1, 3, 3, 6, 16, 6, 10, 50, 50, 10, 15, 120, 225, 120, 15, 21, 245, 735, 735, 245, 21, 28, 448, 1960, 3136, 1960, 448, 28, 36, 756, 4536, 10584, 10584, 4536, 756, 36, 45, 1200, 9450, 30240, 44100, 30240, 9450, 1200, 45, 55, 1815, 18150, 76230, 152460, 152460, 76230, 18150, 1815, 55
Offset: 0

Views

Author

Vladimir Kruchinin, Oct 21 2021

Keywords

Examples

			Triangle starts:
  [0]  1;
  [1]  3,   3;
  [2]  6,  16,    6;
  [3] 10,  50,   50,   10;
  [4] 15, 120,  225,  120,   15;
  [5] 21, 245,  735,  735,  245,  21;
  [6] 28, 448, 1960, 3136, 1960, 448, 28.
  ...
Taylor series: 1 + 3*x*(y + 1) + 2*x^2*(3*y^2 + 8*y + 3) + 10*x^3*(y^3 + 5*y^2 + 5*y + 1) + 15*x^4 (y^4 + 8*y^3 + 15*y^2 + 8*y + 1) + O(x^5)
		

Crossrefs

Cf. A001263, A000217, A002694 (with offset 0 are row sums).

Programs

  • Maple
    T := (n, k) -> binomial(n+2, k) * binomial(n+2, n-k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Oct 22 2021
  • Mathematica
    T[n_, m_] := Binomial[n + 2, m] * Binomial[n + 2, n - m]; Table[T[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Amiram Eldar, Oct 22 2021 *)
  • Maxima
    T(n,m):=binomial(n+2,m)*binomial(n+2,n-m);

Formula

G.f.: (x^2*y^2 - 2*x*y + x^2 - 2*x + 1)/(2*x^4*y^2*sqrt(x^2*y^2 + (-2*x^2-2*x)*y + x^2 - 2*x + 1)) + (x*y + x - 1)/(2*x^4*y^2).
G.f.: diff(N(x,y),x)*N(x,y)/(x*y^2), where N(x,y) is the g.f. of the Narayana numbers A001263.