cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348543 Number of partitions of n into 3 parts with at least 1 odd part.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 4, 4, 7, 6, 10, 9, 14, 12, 19, 16, 24, 20, 30, 25, 37, 30, 44, 36, 52, 42, 61, 49, 70, 56, 80, 64, 91, 72, 102, 81, 114, 90, 127, 100, 140, 110, 154, 121, 169, 132, 184, 144, 200, 156, 217, 169, 234, 182, 252, 196, 271, 210, 290, 225, 310, 240, 331, 256, 352
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 21 2021

Keywords

Crossrefs

Cf. A069905.

Programs

  • Mathematica
    a[n_] := Sum[1 - Mod[j + 1, 2] * Mod[i + 1, 2] * Mod[n - i - j + 1, 2], {j, 1, Floor[n/3]}, {i, j, Floor[(n - j)/2]}]; Array[a, 100] (* Amiram Eldar, Oct 22 2021 *)

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (1-((j+1) mod 2)*((i+1) mod 2)*((n-i-j+1) mod 2)).
G.f.: -x^3*(x^6+x^5+x^4+x^3+x^2+x+1)/(x^12-x^10-x^8+x^4+x^2-1). - Alois P. Heinz, Oct 22 2021
a(n) = a(n-2)+a(n-4)-a(n-8)-a(n-10)+a(n-12). - Wesley Ivan Hurt, Nov 18 2021