A348543 Number of partitions of n into 3 parts with at least 1 odd part.
0, 0, 1, 1, 2, 2, 4, 4, 7, 6, 10, 9, 14, 12, 19, 16, 24, 20, 30, 25, 37, 30, 44, 36, 52, 42, 61, 49, 70, 56, 80, 64, 91, 72, 102, 81, 114, 90, 127, 100, 140, 110, 154, 121, 169, 132, 184, 144, 200, 156, 217, 169, 234, 182, 252, 196, 271, 210, 290, 225, 310, 240, 331, 256, 352
Offset: 1
Links
- Index entries for sequences related to partitions
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,0,0,-1,0,-1,0,1).
Crossrefs
Cf. A069905.
Programs
-
Mathematica
a[n_] := Sum[1 - Mod[j + 1, 2] * Mod[i + 1, 2] * Mod[n - i - j + 1, 2], {j, 1, Floor[n/3]}, {i, j, Floor[(n - j)/2]}]; Array[a, 100] (* Amiram Eldar, Oct 22 2021 *)
Formula
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (1-((j+1) mod 2)*((i+1) mod 2)*((n-i-j+1) mod 2)).
G.f.: -x^3*(x^6+x^5+x^4+x^3+x^2+x+1)/(x^12-x^10-x^8+x^4+x^2-1). - Alois P. Heinz, Oct 22 2021
a(n) = a(n-2)+a(n-4)-a(n-8)-a(n-10)+a(n-12). - Wesley Ivan Hurt, Nov 18 2021