cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348544 Positive integers that are equal both to the product of two integers ending with 3 and to that of two integers ending with 7.

Original entry on oeis.org

189, 399, 459, 609, 729, 819, 969, 999, 1029, 1239, 1269, 1449, 1479, 1539, 1659, 1729, 1809, 1869, 1989, 2079, 2109, 2289, 2349, 2499, 2619, 2639, 2679, 2709, 2889, 2919, 3009, 3059, 3129, 3159, 3219, 3249, 3339, 3429, 3519, 3549, 3699, 3759, 3819, 3969, 4029
Offset: 1

Views

Author

Stefano Spezia, Oct 22 2021

Keywords

Comments

Intersection of A346950 and A348054.

Examples

			189 = 7*27 = 3*63, 399 = 3*133 = 7*57, 459 = 3*153 = 17*27, 609 = 3*203 = 7*87, ...
		

Crossrefs

Cf. A017377 (supersequence), A346950, A348054, A348546.

Programs

  • Mathematica
    max=4050; Select[Intersection[Union@Flatten@Table[a*b, {a, 3, Floor[max/3], 10}, {b, a, Floor[max/a], 10}], Union@Flatten@Table[a*b, {a, 7, Floor[max/7], 10}, {b, a, Floor[max/a], 10}]], 0<#
    				
  • PARI
    isok(m) = my(ok3=0, ok7=0); fordiv(m, d, if (((d % 10) == 3) && ((m/d % 10) == 3), ok3++); if (((d % 10) == 7) && ((m/d % 10) == 7), ok7++); if (ok3 && ok7, return(1))); \\ Michel Marcus, Oct 22 2021
    
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)) & set(a*b for a in range(7, lim//7+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(4029)) # Michael S. Branicky, Oct 22 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.