A348550 Heinz numbers of integer partitions whose length is 2/3 their sum, rounded down.
1, 3, 6, 9, 10, 18, 20, 36, 40, 54, 56, 60, 108, 112, 120, 216, 224, 240, 324, 336, 352, 360, 400, 648, 672, 704, 720, 800, 1296, 1344, 1408, 1440, 1600, 1664, 1944, 2016, 2112, 2160, 2240, 2400, 3328, 3888, 4032, 4224, 4320, 4480, 4800, 6656, 7776, 8064, 8448
Offset: 1
Keywords
Examples
The terms and their prime indices begin: 1: {} 3: {2} 6: {1,2} 9: {2,2} 10: {1,3} 18: {1,2,2} 20: {1,1,3} 36: {1,1,2,2} 40: {1,1,1,3} 54: {1,2,2,2} 56: {1,1,1,4} 60: {1,1,2,3} 108: {1,1,2,2,2} 112: {1,1,1,1,4} 120: {1,1,1,2,3} 216: {1,1,1,2,2,2} 224: {1,1,1,1,1,4} 240: {1,1,1,1,2,3}
Crossrefs
Programs
-
Mathematica
Select[Range[1000],Floor[2*Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/3]==PrimeOmega[#]&]
-
PARI
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); } isA348550(n) = (bigomega(n)==floor((2/3)*A056239(n))); \\ Antti Karttunen, Nov 08 2021
Comments