cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A028982 Squares and twice squares.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 25, 32, 36, 49, 50, 64, 72, 81, 98, 100, 121, 128, 144, 162, 169, 196, 200, 225, 242, 256, 288, 289, 324, 338, 361, 392, 400, 441, 450, 484, 512, 529, 576, 578, 625, 648, 676, 722, 729, 784, 800, 841, 882, 900, 961, 968, 1024
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that sum of divisors of n (A000203) is odd.
Also the numbers with an odd number of run sums (trapezoidal arrangements, number of ways of being written as the difference of two triangular numbers). - Ron Knott, Jan 27 2003
Pell(n)*Sum_{k|n} 1/Pell(k) is odd, where Pell(n) is A000129(n). - Paul Barry, Oct 12 2005
Number of odd divisors of n (A001227) is odd. - Vladeta Jovovic, Aug 28 2007
A071324(a(n)) is odd. - Reinhard Zumkeller, Jul 03 2008
Sigma(a(n)) = A000203(a(n)) = A152677(n). - Jaroslav Krizek, Oct 06 2009
Numbers n such that sum of odd divisors of n (A000593) is odd. - Omar E. Pol, Jul 05 2016
A187793(a(n)) is odd. - Timothy L. Tiffin, Jul 18 2016
If k is odd (k = 2m+1 for m >= 0), then 2^k = 2^(2m+1) = 2*(2^m)^2. If k is even (k = 2m for m >= 0), then 2^k = 2^(2m) = (2^m)^2. So, the powers of 2 sequence (A000079) is a subsequence of this one. - Timothy L. Tiffin, Jul 18 2016
Numbers n such that A175317(n) = Sum_{d|n} pod(d) is odd, where pod(m) = the product of divisors of m (A007955). - Jaroslav Krizek, Dec 28 2016
Positions of zeros in A292377 and A292383, positions of ones in A286357 and A292583. (See A292583 for why.) - Antti Karttunen, Sep 25 2017
Numbers of the form A000079(i)*A016754(j), i,j>=0. - R. J. Mathar, May 30 2020
Equivalently, numbers whose odd part is square. Cf. A042968. - Peter Munn, Jul 14 2020
These are the Heinz numbers of the partitions counted by A119620. - Gus Wiseman, Oct 29 2021
Numbers m whose abundance, A033880(m), is odd. - Peter Munn, May 23 2022
Numbers with an odd number of middle divisors (cf. A067742). - Omar E. Pol, Aug 02 2022

Crossrefs

Complement of A028983.
Characteristic function is A053866, A093709.
Odd terms in A178910.
Supersequence of A000079.

Programs

  • Haskell
    import Data.List.Ordered (union)
    a028982 n = a028982_list !! (n-1)
    a028982_list = tail $ union a000290_list a001105_list
    -- Reinhard Zumkeller, Jun 27 2015
    
  • Mathematica
    Take[ Sort[ Flatten[ Table[{n^2, 2n^2}, {n, 35}] ]], 57] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    list(lim)=vecsort(concat(vector(sqrtint(lim\1),i,i^2), vector(sqrtint(lim\2),i,2*i^2))) \\ Charles R Greathouse IV, Jun 16 2011
    
  • Python
    from itertools import count, islice
    from sympy.ntheory.primetest import is_square
    def A028982_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:int(is_square(n) or is_square(n<<1)),count(max(startvalue,1)))
    A028982_list = list(islice(A028982_gen(),30)) # Chai Wah Wu, Jan 09 2023
    
  • Python
    from math import isqrt
    def A028982(n):
        def f(x): return n-1+x-isqrt(x)-isqrt(x>>1)
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 22 2024

Formula

a(n) is asymptotic to c*n^2 with c = 2/(1+sqrt(2))^2 = 0.3431457.... - Benoit Cloitre, Sep 17 2002
In particular, a(n) = c*n^2 + O(n). - Charles R Greathouse IV, Jan 11 2013
a(A003152(n)) = n^2; a(A003151(n)) = 2*n^2. - Enrique Pérez Herrero, Oct 09 2013
Sum_{n>=1} 1/a(n) = Pi^2/4. - Amiram Eldar, Jun 28 2020

A347452 Heinz numbers of integer partitions whose sum is 3/2 their length, rounded down.

Original entry on oeis.org

1, 2, 6, 12, 36, 40, 72, 80, 216, 224, 240, 432, 448, 480, 1296, 1344, 1408, 1440, 1600, 2592, 2688, 2816, 2880, 3200, 6656, 7776, 8064, 8448, 8640, 8960, 9600, 13312, 15552, 16128, 16896, 17280, 17920, 19200, 34816, 39936, 46656, 48384, 50176, 50688, 51840
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2021

Keywords

Comments

Also numbers whose sum of prime indices is 3/2 their number, rounded down, where a prime index of n is a number m such that prime(m) divides n.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The sequence contains n iff A056239(n) = floor(3*A001222(n)/2). Here, A056239 adds up prime indices, and A001222 counts them with multiplicity.
Counting the partitions with these Heinz numbers gives A119620 with zeros interspersed every three terms.

Examples

			The initial terms and their prime indices:
      1: {}
      2: {1}
      6: {1,2}
     12: {1,1,2}
     36: {1,1,2,2}
     40: {1,1,1,3}
     72: {1,1,1,2,2}
     80: {1,1,1,1,3}
    216: {1,1,1,2,2,2}
    224: {1,1,1,1,1,4}
    240: {1,1,1,1,2,3}
    432: {1,1,1,1,2,2,2}
    448: {1,1,1,1,1,1,4}
    480: {1,1,1,1,1,2,3}
   1296: {1,1,1,1,2,2,2,2}
   1344: {1,1,1,1,1,1,2,4}
   1408: {1,1,1,1,1,1,1,5}
   1440: {1,1,1,1,1,2,2,3}
   1600: {1,1,1,1,1,1,3,3}
		

Crossrefs

Counting terms by Heinz weight (in A032766) gives A119620.
An adjoint version is A348550, counted by A108711.
A000041 counts partitions.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344606 counts wiggly permutations of prime factors.

Programs

  • Mathematica
    Select[Range[1000],Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]==Floor[3*PrimeOmega[#]/2]&]

A348384 Heinz numbers of integer partitions whose length is 2/3 their sum.

Original entry on oeis.org

1, 6, 36, 40, 216, 224, 240, 1296, 1344, 1408, 1440, 1600, 6656, 7776, 8064, 8448, 8640, 8960, 9600, 34816, 39936, 46656, 48384, 50176, 50688, 51840, 53760, 56320, 57600, 64000, 155648, 208896, 239616, 266240, 279936, 290304, 301056, 304128, 311040, 315392
Offset: 1

Views

Author

Gus Wiseman, Nov 13 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose sum of prime indices is 3/2 their number. Counting the partitions with these Heinz numbers gives A035377(n) = A000041(n/3) if n is a multiple of 3, otherwise 0.

Examples

			The terms and their prime indices begin:
     1: {}
     6: {1,2}
    36: {1,1,2,2}
    40: {1,1,1,3}
   216: {1,1,1,2,2,2}
   224: {1,1,1,1,1,4}
   240: {1,1,1,1,2,3}
  1296: {1,1,1,1,2,2,2,2}
  1344: {1,1,1,1,1,1,2,4}
  1408: {1,1,1,1,1,1,1,5}
  1440: {1,1,1,1,1,2,2,3}
  1600: {1,1,1,1,1,1,3,3}
  6656: {1,1,1,1,1,1,1,1,1,6}
  7776: {1,1,1,1,1,2,2,2,2,2}
		

Crossrefs

These partitions are counted by A035377.
Rounding down gives A348550 or A347452, counted by A108711 or A119620.
A000041 counts integer partitions.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344606 counts alternating permutations of prime factors.

Programs

  • Mathematica
    Select[Range[1000],2*Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]==3*PrimeOmega[#]&]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
    isA348384(n) = (A056239(n)==(3/2)*bigomega(n)); \\ Antti Karttunen, Nov 22 2021

Formula

The sequence contains n iff A056239(n) = 3*A001222(n)/2. Here, A056239 adds up prime indices, while A001222 counts them with multiplicity.
Intersection of A028260 and A347452.
Showing 1-3 of 3 results.