A348595 Triangle read by rows: Number of walks from (0,0) to (3n,3k) on the square lattice with up and right steps where squares (x,y)=(1,1) mod 3 or (x,y)=(2,2) mod 3 are not entered.
1, 1, 4, 1, 8, 28, 1, 12, 64, 212, 1, 16, 116, 520, 1676, 1, 20, 184, 1052, 4288, 13604, 1, 24, 268, 1872, 9316, 35784, 112380, 1, 28, 368, 3044, 17976, 81708, 301440, 940020, 1, 32, 484, 4632, 31740, 167376, 713940, 2558280, 7936620, 1, 36, 616, 6700, 52336, 314932, 1531000, 6231100, 21842560, 67494980
Offset: 0
Examples
The array is symmetric; the non-redundant triangular part starts 1 1 4 1 8 28 1 12 64 212 1 16 116 520 1676 1 20 184 1052 4288 13604 1 24 268 1872 9316 35784 112380 1 28 368 3044 17976 81708 301440 940020 1 32 484 4632 31740 167376 713940 2558280 7936620
Links
Programs
-
Maple
A348595 := proc(n,k) g := (1-u*v)/(1-u-v-3*u*v) ; coeftayl(%,u=0,n) ; coeftayl(%,v=0,k) ; end proc: seq(seq( A348595(n,k),k=0..n),n=0..10) ;
-
Mathematica
T[n_, k_] := Module[{u, v}, SeriesCoefficient[(1 - u v)/(1 - u - v - 3 u v), {u, 0, n}] // SeriesCoefficient[#, {v, 0, k}]&]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 16 2023 *)
Formula
G.f.: (1-u*v)/(1-u-v-3*u*v) .