cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348595 Triangle read by rows: Number of walks from (0,0) to (3n,3k) on the square lattice with up and right steps where squares (x,y)=(1,1) mod 3 or (x,y)=(2,2) mod 3 are not entered.

Original entry on oeis.org

1, 1, 4, 1, 8, 28, 1, 12, 64, 212, 1, 16, 116, 520, 1676, 1, 20, 184, 1052, 4288, 13604, 1, 24, 268, 1872, 9316, 35784, 112380, 1, 28, 368, 3044, 17976, 81708, 301440, 940020, 1, 32, 484, 4632, 31740, 167376, 713940, 2558280, 7936620, 1, 36, 616, 6700, 52336, 314932, 1531000, 6231100, 21842560, 67494980
Offset: 0

Views

Author

R. J. Mathar, Jan 26 2022

Keywords

Examples

			The array is symmetric; the non-redundant triangular part starts
   1
   1    4
   1    8   28
   1   12   64  212
   1   16  116  520  1676
   1   20  184 1052  4288  13604
   1   24  268 1872  9316  35784 112380
   1   28  368 3044 17976  81708 301440  940020
   1   32  484 4632 31740 167376 713940 2558280 7936620
		

Crossrefs

Cf. A085363 (diagonal), A307584 (walks to (3n+1,3k))

Programs

  • Maple
    A348595 := proc(n,k)
        g := (1-u*v)/(1-u-v-3*u*v) ;
        coeftayl(%,u=0,n) ;
        coeftayl(%,v=0,k) ;
    end proc:
    seq(seq( A348595(n,k),k=0..n),n=0..10) ;
  • Mathematica
    T[n_, k_] := Module[{u, v}, SeriesCoefficient[(1 - u v)/(1 - u - v - 3 u v), {u, 0, n}] // SeriesCoefficient[#, {v, 0, k}]&];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 16 2023 *)

Formula

G.f.: (1-u*v)/(1-u-v-3*u*v) .