cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A085363 a(0)=1, for n>0: a(n) = 4*9^(n-1) - (1/2)*Sum_{i=1..n-1} a(i)*a(n-i).

Original entry on oeis.org

1, 4, 28, 212, 1676, 13604, 112380, 940020, 7936620, 67494980, 577309148, 4961187092, 42801458764, 370478720356, 3215827927228, 27982214082612, 244004165618220, 2131710838837380, 18654504783815580, 163488269572628820
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jun 25 2003

Keywords

Comments

Apparently, the number of 2-D directed walks of semilength n starting at (0,0) and ending on the X-axis using steps NE, SE, NW and SW avoiding adjacent NW/SE and adjacent NE/SW. - David Scambler, Jun 20 2013
Form an array with m(0,n) = m(n,0) = 2^n; m(i,j) equals the sum of the terms to the left of m(i,j) and the sum of the terms above m(i,j), which is m(i,j) = Sum_{k-0..j-1} m(i,k) + Sum_{k=0..i-1} m(k,j). m(n,n) = a(n). - J. M. Bergot, Jul 10 2013
From G. C. Greubel, May 22 2020: (Start)
This sequence is part of a class of sequences, for m >= 0, with the properties:
a(n) = 2*m*(4*m+1)^(n-1) - (1/2)*Sum_{k=1..n-1} a(k)*a(n-k).
a(n) = Sum_{k=0..n} m^k * binomial(n-1, n-k) * binomial(2*k, k).
a(n) = (2*m) * Hypergeometric2F1(-n+1, 3/2; 2; -4*m), for n > 0.
n*a(n) = 2*((2*m+1)*n - (m+1))*a(n-1) - (4*m+1)*(n-2)*a(n-2).
(4*m + 1)^n = Sum_{k=0..n} Sum_{j=0..k} a(j)*a(k-j).
G.f.: sqrt( (1 - t)/(1 - (4*m+1)*t) ).
This sequence is the case of m=2. (End)
The number of elements in the free group on two generators of length 2n that are zero exponent sum. - Tey Berendschot, Aug 09 2021

Crossrefs

Cf. A001019 (9^n), A084771, A085362, A085364, diagonal of A348595.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt((1-x)/(1-9*x)) )); // G. C. Greubel, May 23 2020
    
  • Maple
    seq(coeff(series(sqrt((1-x)/(1-9*x)), x, n+1), x, n), n = 0..30); # G. C. Greubel, May 23 2020
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-9x)], {x, 0, 25}], x]
  • PARI
    my(x='x+O('x^66)); Vec(sqrt((1-x)/(1-9*x)) ) \\ Joerg Arndt, May 10 2013
    
  • Sage
    def A085363_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( sqrt((1-x)/(1-9*x)) ).list()
    A085363_list(30) # G. C. Greubel, May 23 2020

Formula

G.f.: sqrt((1-x)/(1-9*x)).
Sum_{i=0..n} Sum_{j=0..i} a(j)*a(i-j) = 9^n.
From Vladeta Jovovic, Oct 10 2003: (Start)
First differences of A084771.
a(n) = Sum_{k=1..n} 2^k * binomial(n-1, k-1) * binomial(2*k, k). (End)
D-finite with recurrence n*a(n) = (10*n-6)*a(n-1) - (9*n-18)*a(n-2). - Vladeta Jovovic, Jul 16 2004
a(n) ~ 2*sqrt(2)*3^(2*n-1)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 14 2012
a(0) = 1; a(n) = (4/n) * Sum_{k=0..n-1} (n+k) * a(k). - Seiichi Manyama, Mar 28 2023
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (1/4)^n * Sum_{k=0..n} 9^k * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (-2)^k * 9^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)

A307584 Triangle read by rows: T(n,k) is the number of non-backtracking walks on Z^2 of length n that are active for k steps, where the walk is initially active and turns in the walk toggle the activity.

Original entry on oeis.org

1, 2, 1, 2, 6, 1, 2, 14, 10, 1, 2, 22, 42, 14, 1, 2, 30, 106, 86, 18, 1, 2, 38, 202, 318, 146, 22, 1, 2, 46, 330, 838, 722, 222, 26, 1, 2, 54, 490, 1774, 2514, 1382, 314, 30, 1, 2, 62, 682, 3254, 6802, 6062, 2362, 422, 34, 1, 2, 70, 906, 5406, 15378, 20406, 12570, 20406, 12570, 3726, 546, 38, 1
Offset: 1

Views

Author

Matthew Fahrbach, Apr 15 2019

Keywords

Examples

			Triangle begins:
1;
2,  1;
2,  6,   1;
2, 14,  10,    1;
2, 22,  42,   14,     1;
2, 30, 106,   86,    18,     1;
2, 38, 202,  318,   146,    22,     1;
2, 46, 330,  838,   722,   222,    26,    1;
2, 54, 490, 1774,  2514,  1382,   314,   30,   1;
2, 62, 682, 3254,  6802,  6062,  2362,  422,  34,  1;
2, 70, 906, 5406, 15378, 20406, 12570, 3726, 546, 38, 1;
...
		

Crossrefs

Row sums give A000244. Cf. A051708 (subdiagonal T(2n,n)).
Showing 1-2 of 2 results.