A348598 Least prime p of the form k^2+1 such that p == A002496(n) (mod A002496(n+1)) with p>A002496(n), or 0 if no such p exists.
17, 1297, 90001, 1008017, 147457, 2421137, 15952037, 1378277, 7203857, 107122501, 164968337, 34503877, 38688401, 4851958337, 1075577617, 197121601, 1044582401, 315559697, 70924211857, 730296577, 20705483237, 15103426817, 197740302401, 4587352901, 155964965777
Offset: 1
Keywords
Examples
a(2) = 1297 because 1297 == A002496(2) (mod A002496(3)) => 1297 == 5 (mod 17).
Links
- Michel Lagneau, a(n),n=1..90
Programs
-
Maple
with(numtheory):T:=array(1..30000):k:=0: nn:=500000: for m from 1 to nn do: if isprime(m^2+1) then k:=k+1:T[k]:=m^2+1: else fi: od: for n from 1 to 32 do: ii:=0:r:=T[n]:q:=T[n+1]: for i from 1 to k while(ii=0) do: p:=T[i]:r1:=irem(p,q): if r1=r and p>q then ii:=1: printf(`%d, `,p) else fi: od: od:
Comments