A348600 Triangle read by rows: T(n,k) is the number of (unlabeled) connected graphs with n nodes and metric dimension k, 0 <= k < n.
1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 13, 6, 1, 0, 1, 62, 39, 9, 1, 0, 1, 275, 488, 77, 11, 1, 0, 1, 1710, 8116, 1145, 130, 14, 1, 0, 1, 12061, 216432, 29958, 2415, 196, 16, 1, 0, 1, 93706, 9512947, 2026922, 78265, 4434, 276, 19, 1
Offset: 1
Examples
Triangle begins: n\k| 0 1 2 3 4 5 6 7 8 9 ---+------------------------------------------------ 1 | 1 2 | 0 1 3 | 0 1 1 4 | 0 1 4 1 5 | 0 1 13 6 1 6 | 0 1 62 39 9 1 7 | 0 1 275 488 77 11 1 8 | 0 1 1710 8116 1145 130 14 1 9 | 0 1 12061 216432 29958 2415 196 16 1 10 | 0 1 93706 9512947 2026922 78265 4434 276 19 1
Links
- Gary Chartrand, Linda Eroh, Mark A. Johnson, and Ortrud R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics 105 (2000), 99-113.
- Richard C. Tillquist, Rafael M. Frongillo, and Manuel E. Lladser, Getting the lay of the land in discrete space: a survey of metric dimension and its applications, arXiv:2104.07201 [math.CO], 2021.
- Wikipedia, Metric dimension
Formula
T(n,1) = 1 for n >= 2, because the only graphs with metric dimension 1 are the paths of positive lengths (Chartrand et al. 2000).
T(n,n-2) = A047209(n-2) = floor(5*n/2-6) for n >= 3 (follows from the complete description of graphs with n nodes and metric dimension n-2 by Chartrand et al. 2000).
T(n,n-1) = 1 for n >= 1 , because the only graph with n nodes and metric dimension n-1 is the complete graph (Chartrand et al. 2000).