cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348608 a(n) = Sum_{d|n, d <= sqrt(n)} (-1)^(d + n/d) * d.

Original entry on oeis.org

1, -1, 1, 1, 1, -3, 1, 1, 4, -3, 1, -2, 1, -3, 4, 5, 1, -6, 1, -3, 4, -3, 1, 2, 6, -3, 4, -3, 1, -11, 1, 5, 4, -3, 6, 0, 1, -3, 4, 0, 1, -12, 1, -3, 9, -3, 1, 8, 8, -8, 4, -3, 1, -12, 6, -2, 4, -3, 1, -5, 1, -3, 11, 13, 6, -12, 1, -3, 4, -15, 1, 0, 1, -3, 9, -3, 8, -12, 1, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, (-1)^(# + n/#) # &, # <= Sqrt[n] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[k x^(k^2)/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, if (d<=sqrt(n), (-1)^(d + n/d)*d)); \\ Michel Marcus, Oct 25 2021

Formula

G.f.: Sum_{k>=1} k * x^(k^2) / (1 + x^k).
a(n) = 1 if n = 1 or n is an odd prime (A006005) or n = 4 or n = 8. - Bernard Schott, Dec 18 2021
a(n) = A037213(n) - A348953(n). - Ridouane Oudra, Aug 21 2025