A348611 Number of ordered factorizations of n with no adjacent equal factors.
1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 14, 1, 3, 3, 6, 1, 13, 1, 7, 3, 3, 3, 17, 1, 3, 3, 14, 1, 13, 1, 6, 6, 3, 1, 29, 1, 6, 3, 6, 1, 14, 3, 14, 3, 3, 1, 36, 1, 3, 6, 14, 3, 13, 1, 6, 3, 13, 1, 45, 1, 3, 6, 6, 3, 13, 1, 29, 4, 3
Offset: 1
Keywords
Examples
The a(n) ordered factorizations without adjacent equal factors for n = 1, 6, 12, 16, 24, 30, 32, 36 are: () 6 12 16 24 30 32 36 2*3 2*6 2*8 3*8 5*6 4*8 4*9 3*2 3*4 8*2 4*6 6*5 8*4 9*4 4*3 2*4*2 6*4 10*3 16*2 12*3 6*2 8*3 15*2 2*16 18*2 2*3*2 12*2 2*15 2*8*2 2*18 2*12 3*10 4*2*4 3*12 2*3*4 2*3*5 2*3*6 2*4*3 2*5*3 2*6*3 2*6*2 3*2*5 2*9*2 3*2*4 3*5*2 3*2*6 3*4*2 5*2*3 3*4*3 4*2*3 5*3*2 3*6*2 4*3*2 6*2*3 6*3*2 2*3*2*3 3*2*3*2 Thus, of total A074206(12) = 8 ordered factorizations of 12, only factorizations 2*2*3 and 3*2*2 (see A348616) are not included in this count, therefore a(12) = 6. - _Antti Karttunen_, Nov 12 2021
Crossrefs
Factorizations without a permutation of this type are counted by A333487.
Factorizations with a permutation of this type are counted by A335434.
The complement is counted by A348616.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A348613 counts non-alternating ordered factorizations.
Programs
-
Mathematica
ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]; antirunQ[y_]:=Length[y]==Length[Split[y]] Table[Length[Select[ordfacs[n],antirunQ]],{n,100}]
-
PARI
A348611(n, e=0) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d!=e), s += A348611(n/d, d))); (s)); \\ Antti Karttunen, Nov 12 2021
Comments