A348636 Greedy Cantor's Dust Partition.
1, 3, 8, 22, 24, 65, 70, 72, 194, 208, 210, 215, 580, 582, 623, 628, 630, 644, 1738, 1740, 1745, 1867, 1869, 1883, 1888, 1890, 1931, 5212, 5214, 5219, 5233, 5235, 5600, 5605, 5607, 5648, 5662, 5664, 5669, 5791, 5793, 15635, 15640, 15642, 15656, 15697, 15699
Offset: 1
Keywords
Examples
S(1) = Cantor's dust 1,2,4,5,10,11,13,14,28,29,31,32,... (A003278) S(2) = 3,6,7,12,15,16,19,30,33,34,... S(3) = 8,9,17,18,20,21,35,36,44,... S(4) = 22,23,25,26,49,50,52,53,... S(5) = 24,27,51,54,60,63,64,67,... S(6) = 65,66,68,69,... S(7) = 70,71,... S(8) = 72,... a(1) = min [S(1)] = 1 a(2) = min [S(2)] = 3 a(3) = min [S(3)] = 8 a(4) = min [S(4)] = 22 a(5) = min [S(5)] = 24 a(6) = min [S(6)] = 65 a(7) = min [S(7)] = 70 a(8) = min [S(8)] = 72
Links
- MathPickle, Hare vs. Hare, 2017.
Formula
a(n) = A265316(n) + 1.
Extensions
More terms from David A. Corneth, Nov 03 2021 (computed from A265316).
Comments