A348640 Denominators of the remainders in the greedy Egyptian fraction representation of 1 with square denominators (A348626).
1, 4, 2, 4, 36, 36, 1764, 2352, 115248, 416333400, 107225418169800, 562904175532925098845000, 1857180475556752726157213892231405000, 424594887903818740281781489141947299544299873193026842805000, 27616236678198713245845367246922973802897093015095664467139174240964043973815461112656369429045000
Offset: 0
Examples
The first few remainders are 1, 3/4, 1/2, 1/4, 5/36, 1/36, 13/1764, 1/2352, 1/115248, 11/416333400, ... - _N. J. A. Sloane_, Apr 21 2025
Programs
-
PARI
s=1; for(n=1, 20, print1(denominator(s), ", "); t=sqrtint(floor(1/s))+1; s-=1/t^2);
Formula
a(n) = denominator of 1 - Sum_{k=1..n} 1/A348626(k)^2.
Comments