A348643 a(n) = (16*n + 1)*(2592*n^2 + 288*n + 7).
7, 49079, 361383, 1185751, 2771015, 5366007, 9219559, 14580503, 21697671, 30819895, 42196007, 56074839, 72705223, 92335991, 115215975, 141594007, 171718919, 205839543, 244204711, 287063255, 334664007, 387255799, 445087463, 508407831, 577465735, 652510007, 733789479, 821552983
Offset: 0
Examples
From _Elmo R. Oliveira_, Sep 03 2025: (Start) G.f.: (7 + 49051*x + 165109*x^2 + 34665*x^3)/(x-1)^4. E.g.f.: (7 + 49072*x + 131616*x^2 + 41472*x^3)*exp(x). a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
Links
- Ajai Choudhry, A diophantine problem concerning third order matrices, arXiv:2110.12643 [math.NT], 2021.
- Wikipedia, Unimodular matrix.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
PARI
a(n) = (16*n + 1)*(2592*n^2 + 288*n + 7);
Comments