A348677 a(n) is the difference between A262275(n) and the next lower prime.
1, 4, 4, 4, 6, 4, 2, 14, 6, 10, 12, 2, 6, 2, 4, 8, 4, 4, 6, 6, 6, 10, 4, 6, 4, 10, 2, 14, 14, 8, 10, 2, 18, 8, 8, 4, 10, 4, 8, 12, 6, 14, 2, 2, 2, 8, 12, 6, 10, 10, 12, 10, 8, 2, 2, 4, 6, 6, 16, 14, 6, 6, 2, 10, 6, 2, 8, 6, 20, 2, 8, 28, 6, 16, 2, 6, 2, 10, 6, 22, 4, 6, 4, 14, 6, 2
Offset: 1
Keywords
Examples
For n = 3, a(3) = 17 - 13 = 4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Michael P. May, Properties of Higher-Order Prime Number Sequences, Missouri J. Math. Sci. (2020) Vol. 32, No. 2, 158-170; and arXiv version, arXiv:2108.04662 [math.NT], 2021.
- Michael P. May, Approximating the Prime Counting Function via an Operation on a Unique Prime Number Subsequence, arXiv:2112.08941 [math.GM], 2021.
- Michael P. May, Relationship Between the Prime-Counting Function and a Unique Prime Number Sequence, Missouri J. Math. Sci. (2023), Vol. 35, No. 1, 105-116.
Programs
-
Maple
b:= proc(n) option remember; `if`(isprime(n), 1+b(numtheory[pi](n)), 0) end: g:= proc(n) option remember; local p; p:= g(n-1); do p:= nextprime(p); if b(p)::even then break fi od; p end: g(1):=3: a:= n-> (t-> t-prevprime(t))(g(n)): seq(a(n), n=1..86); # Alois P. Heinz, Jan 06 2022
-
Mathematica
fQ[n_]:=If[!PrimeQ[n]||(PrimeQ[n]&&FreeQ[lst,PrimePi[n]]),AppendTo[lst,n]];k=2;lst={1};While[k<10000000,fQ@k;k++];tab1=Select[lst,PrimeQ] lowerP[n_]:=Module[{m}, m=n;While[!PrimeQ[m-1],m--]; m-1] tab2=lowerP/@tab1 tab3=tab1-tab2
Comments