A348726 Decimal expansion of the positive root of Shanks' simplest cubic associated with the prime p = 37.
5, 3, 4, 4, 7, 1, 2, 3, 6, 5, 4, 5, 1, 8, 3, 4, 9, 6, 3, 1, 6, 5, 6, 9, 1, 4, 1, 8, 8, 4, 6, 9, 8, 6, 4, 6, 9, 9, 5, 8, 6, 9, 5, 8, 7, 0, 8, 1, 4, 2, 2, 4, 9, 4, 6, 3, 9, 6, 3, 6, 1, 7, 5, 6, 0, 1, 5, 4, 5, 3, 8, 5, 7, 2, 1, 1, 5, 7, 7, 0, 1, 2, 1, 6, 8, 7, 6, 6, 8, 2, 1, 9, 1, 4, 2, 4, 3, 4, 1, 6, 9
Offset: 1
Examples
5.34471236545183496316569141884698646995869587081422 ...
Links
- T. W. Cusick and Lowell Schoenfeld, A table of fundamental pairs of units in totally real cubic fields, Math. Comp. 48 (1987), 147-158
- D. Shanks, The simplest cubic fields, Math. Comp., 28 (1974), 1137-1152
Programs
-
Maple
R := k -> sin(k*Pi/37)*sin(6*k*Pi/37)*sin(8*k*Pi/37)* sin(10*k*Pi/37)*sin(11*k*Pi/37)*sin(14*k*Pi/37): evalf(-R(2)/R(3), 100);
-
Mathematica
f[ks_,m_] := Product[Sin[k*Pi/m], {k,ks}]; ks = {1, 6, 8, 10, 11, 14}; RealDigits[f[2*ks,37]/f[3*ks,37], 10, 100][[1]] (* Amiram Eldar, Nov 08 2021 *)
Formula
r_0 = 1 + 2*(cos(3*Pi/37) - cos(4*Pi/37) + cos(5*Pi/37) + cos(7*Pi/37) + cos(13*Pi/37) - cos(18*Pi/37)).
r_0 = |R(2)/R(3)| = Product_{n >= 0} ( Product_{k in the coset 2*R} (37*n+k) )/( Product_{k in the coset 3*R} (37*n + k) );
|r_1| = |R(1)/R(2)| = Product_{n >= 0} ( Product_{k in the group R} (37*n+k) )/( Product_{k in the coset 2*R} (37*n + k) );
|r_2| = |R(3)/R(1)| = Product_{n >= 0} ( Product_{k in the coset 3*R} (37*n+k) )/( Product_{k in the group R} (37*n + k) ).
R(2)/R(1) + R(2)/R(3) = 1 = R(3)/R(2) - R(3)/R(1) = R(1)/R(2) - R(1)/R(3).
Comments