cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A326042 a(n) = A064989(sigma(A003961(n))), where A003961 shifts the prime factorization of n one step towards larger primes, and A064989 shifts it back towards smaller primes.

Original entry on oeis.org

1, 1, 2, 11, 1, 2, 2, 3, 29, 1, 5, 22, 4, 2, 2, 49, 3, 29, 2, 11, 4, 5, 6, 6, 34, 4, 22, 22, 1, 2, 17, 55, 10, 3, 2, 319, 10, 2, 8, 3, 7, 4, 2, 55, 29, 6, 8, 98, 85, 34, 6, 44, 6, 22, 5, 6, 4, 1, 29, 22, 13, 17, 58, 1091, 4, 10, 4, 33, 12, 2, 31, 87, 3, 10, 68, 22, 10, 8, 10, 49, 469, 7, 12, 44, 3, 2, 2, 15, 25, 29, 8, 66, 34, 8
Offset: 1

Views

Author

Antti Karttunen, Jun 16 2019

Keywords

Comments

For any other number n than those in A326182 we have a(n) < A003961(n).
Fixed points k (for which a(k) = k) satisfy A003973(k) = 2^e * A003961(k) for some exponent e >= 0. Applying A003961 to such numbers gives the odd terms in A336702, of which there are likely to be just a single instance, its initial 1. (Clarified Nov 07 2021).
Conjecture: There are no other fixed points than a(1) = 1. If true, then there are no odd perfect numbers. This condition is equivalent to the condition that if A161942 has no fixed points larger than one, then there are no odd perfect numbers. This follows as whenever k is a fixed point, that is, a(k) = k, then we should also have A003961(a(k)) = A003961(A064989(sigma(A003961(k)))) = A161942(A003961(k)) = A003961(k). Note that A003961 is an injective and surjective mapping from natural numbers to odd numbers, A064989 is its (left) inverse, and composition A003961(A064989(n)) is equivalent to A000265(n).
From Antti Karttunen, Aug 05 2020: (Start)
For any hypothetical odd perfect number x, we would have A003973(k) = 2 * A003961(k), with k = A064989(x) and x = A003961(k). Thus we would have a(k) = A064989(sigma(A003961(k))) = A064989(sigma(x)) = A064989(2*x) = A064989(x) = k. On the other hand, A003973(k) = sigma(A003961(k)) < A003961(A003961(k)) [see A286385 for the reason why], so a necessary condition for this is that x should be one of the terms of A246282. (Clarified Dec 01 2020).
(End)

Crossrefs

Cf. A000037, A000203, A000265, A000593, A003961, A003973, A064989, A161942, A162284, A246282, A286385, A326041, A326182, A336702 (numbers whose abundancy index is a power of 2).
Cf. A348736 [n - a(n)], A348738 [a(n) < n], A348739 [a(n) > n], A348750 [= A064989(a(A003961(n)))], A348940 [gcd(n,a(n))], A348941, A348942, A351456, A353767, A353790, A353794.
Cf. also A332223 for another conjugation of sigma.

Programs

  • Mathematica
    f1[p_, e_] := NextPrime[p]^e; a1[1] = 1; a1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[2, e_] := 1; f2[p_, e_] := NextPrime[p, -1]^e; a2[1] = 1; a2[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := a2[DivisorSigma[1, a1[n]]]; Array[a, 100] (* Amiram Eldar, Nov 07 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));

Formula

a(n) = A064989(A003973(n)) = A064989(sigma(A003961(n))).
For k in A000037, a(k) = A064989(A003973(k)/2) = A064989((1/2)*sigma(A003961(k))).
Multiplicative with a(p^e) = A064989((q^(e+1)-1)/(q-1)), where q = nextPrime(p). - Antti Karttunen, Nov 05 2021
a(n) = A353790(n) / A353767(n) = A353794(n) / A351456(n). - Antti Karttunen, May 13 2022

Extensions

Keyword:mult added by Antti Karttunen, Nov 05 2021

A336702 Numbers whose abundancy index is a power of 2.

Original entry on oeis.org

1, 6, 28, 496, 8128, 30240, 32760, 2178540, 23569920, 33550336, 45532800, 142990848, 1379454720, 8589869056, 43861478400, 66433720320, 137438691328, 153003540480, 403031236608, 704575228896, 181742883469056, 6088728021160320, 14942123276641920, 20158185857531904, 275502900594021408, 622286506811515392, 2305843008139952128
Offset: 1

Views

Author

Antti Karttunen, Aug 05 2020

Keywords

Comments

Apart from missing 2, this sequence gives all numbers k such that the binary expansion of A156552(k) is a prefix of that of A156552(sigma(k)), that is, for k > 1, numbers k for which sigma(k) is a descendant of k in A005940-tree. This follows because of the two transitions x -> A005843(x) (doubling) and x -> A003961(x) (prime shift) used to generate descendants in A005940-tree, using A003961 at any step of the process will ruin the chances of encountering sigma(k) anywhere further down that subtree.
Proof: Any left child in A005940 (i.e., A003961(k) for k) is larger than sigma(k), for any k > 2 [see A286385 for a proof], and A003961(n) > n for all n > 1. Thus, apart from A003961(2) = 3 = sigma(2), A003961^t(k) > sigma(k), where A003961^t means t-fold application of prime shift, here with t >= 1. On the other hand, sigma(2n) > sigma(n) for all n, thus taking first some doubling steps before a run of one or more prime shift steps will not rescue us, as neither will taking further doubling steps after a bout of prime shifts.
The first terms of A325637 not included in this sequence are 154345556085770649600 and 9186050031556349952000, as they have abundancy index 6.
From Antti Karttunen, Nov 29 2021: (Start)
Odd terms of this sequence are given by the intersection of A349169 and A349174.
A064989 applied to the odd terms of this sequence gives the fixed points of A326042, i.e., the positions of zeros in A348736, and a subset of the positions of ones in A348941.
Odd terms of this sequence form a subsequence of A348943, but should occur neither in A348748 nor in A348749.
(End)

Examples

			For 30240, sigma(30240) = 120960 = 4*30240, therefore, as sigma(k)/k = 2^2, a power of two, 30240 is present.
		

Crossrefs

Cf. A000396, A027687 (subsequences).
Subsequence of A007691, and after 1, also subsequence of A325637.
Union with {2} gives the positions of zeros in A347381.

Programs

  • PARI
    isA336702(n) = { my(r=sigma(n)/n); (1==denominator(r)&&!bitand(r, r-1)); }; \\ (Corrected) - Antti Karttunen, Aug 31 2021

A348738 Numbers k for which A326042(k) < k, where A326042(n) = A064989(sigma(A003961(n))).

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Comments

Claim: If there is an odd term y of A336702 larger than one, and it is the least one of such terms, then it should satisfy condition that for all nontrivial unitary divisor pairs d and x/d of x = A064989(y) [with gcd(d,x/d) = 1, 1 < d < x], the other divisor should reside in this sequence, and the other divisor in A348739. Proof: Applying A064989 to the odd terms of A336702 gives the fixed points of A326042. Suppose there are other odd terms in A336702 in addition to its initial 1, and let y be the least of these odd terms > 1 and x = A064989(y). Because A326042 (from here on indicated with f) is multiplicative, it follows that if we take any two nontrivial unitary divisors a and b of x, with x = a*b, gcd(a,b) = 1, 1 < a,b < x, then f(a)*f(b) = f(x) = x. Because f(x)/x = 1, we must have f(a)/a * f(b)/b = 1, as also the ratio f(n)/n is multiplicative. But f(a)/a and f(b)/b cannot be equal to 1, because then a and b would also be fixed by f, which contradicts our assumption that x were the least such fixed point larger than one. Therefore f(a) < a and f(b) > b, or vice versa. See also the comments in A348930, A348933.
Moreover, all odd perfect numbers (a subsequence of A336702), if such numbers exist, should also satisfy the same condition, regardless of whether they are the least of such numbers or not, because having a non-deficient proper divisor will push the abundancy index (ratio sigma(n)/n) of any number over 2. That is, for any such pair of nontrivial unitary divisors d and x/d, both A003961(d) and A003961(x/d) should be deficient, i.e., neither one should be in A337386. See also the condition given in A347383.
Terms that occur also in A337386 are: 120, 240, 360, 420, 480, 504, 540, 600, 630, ...

Crossrefs

Positions of positive terms in A348736, positions of 1's in A348737 (characteristic function).
Almost complement of A348739.
Subsequences: A000040, A374464 (after its initial 1).
Cf. also A348930, A348933.

Programs

  • Mathematica
    f1[2, e_] := 1; f1[p_, e_] := NextPrime[p, -1]^e; s1[1] = 1; s1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := NextPrime[p]^e; s2[1] = 1; s2[n_] := Times @@ f2 @@@ FactorInteger[n]; Select[Range[100], s1[DivisorSigma[1, s2[#]]] < # &] (* Amiram Eldar, Nov 04 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));
    isA348738(n) = (A326042(n)
    				

A353757 a(n) = A353750(n) - A353749(n).

Original entry on oeis.org

0, 3, -2, 28, -8, 4, -26, 44, 108, 12, -62, 52, -102, -14, -32, 862, -184, 504, -282, 96, -104, -22, -402, 80, 690, -12, -96, 60, -596, 48, -854, 704, -248, -64, -328, 3912, -810, -210, -408, 240, -1360, -56, -1582, 100, 240, -322, -1946, 1708, 174, 3300, -736, 786, -2300, 48, -744, 72, -1128, -356, -2978, 384
Offset: 1

Views

Author

Antti Karttunen, May 10 2022

Keywords

Comments

It is conjectured that there are no other zeros after a(1) = 0.

Crossrefs

Cf. A000203, A064989, A353749, A353750, A353758 (positions of negative terms), A353759 (of terms >= 0), A353760.
Cf. also A348736.

Programs

  • PARI
    A064989(n) = { my(f=factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A353749(n) = (eulerphi(n)*A064989(n));
    A353757(n) = { my(s=sigma(n)); (A353749(s)-A353749(n)); };

Formula

a(n) = A353750(n) - A353749(n) = A353749(A000203(n)) - A353749(n).

A348739 Numbers k for which A326042(k) > k.

Original entry on oeis.org

4, 9, 12, 16, 18, 25, 32, 36, 44, 48, 49, 64, 72, 81, 96, 99, 100, 108, 124, 144, 147, 162, 169, 176, 180, 192, 196, 225, 236, 243, 252, 256, 279, 284, 288, 300, 320, 324, 361, 372, 396, 400, 405, 432, 441, 448, 450, 468, 484, 486, 496, 507, 512, 529, 531, 567, 576, 588, 604, 612, 625, 639, 648, 675, 676, 700, 704
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Comments

Terms that occur also in A337386 are: 180, 300, 720, 900, 960, 1008, 1200, 1440, 1620, 1800, 2016, 2400, ...

Crossrefs

Positions of negative terms in A348736.
Cf. A326182 (subsequence after its initial 1), A348738.
Cf. A000203, A003961, A064989, A161942, A191218, A326042, A337386, A348742, A348749 (corresponding odd numbers), A348942.

Programs

  • Mathematica
    f1[2, e_] := 1; f1[p_, e_] := NextPrime[p, -1]^e; s1[1] = 1; s1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := NextPrime[p]^e; s2[1] = 1; s2[n_] := Times @@ f2 @@@ FactorInteger[n]; Select[Range[700], s1[DivisorSigma[1, s2[#]]] > # &] (* Amiram Eldar, Nov 04 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));
    isA348739(n) = (A326042(n)>n);

A351445 a(n) = A003958(sigma(n)) - A003958(n), where A003958 is multiplicative with a(p^e) = (p-1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

0, 1, -1, 5, -2, 0, -5, 7, 8, 0, -8, 4, -6, -4, -6, 29, -12, 20, -14, 8, -11, -6, -20, 6, 14, 0, -4, 0, -20, -4, -29, 23, -18, -8, -22, 68, -18, -10, -18, 12, -28, -10, -32, 2, 8, -18, -44, 28, 0, 44, -28, 24, -44, 0, -36, 2, -32, -12, -50, 4, -30, -28, -12, 125, -36, -16, -50, 8, -42, -20, -66, 92, -36, 0
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Crossrefs

Cf. A351446 (positions of zeros), A351443 (odd terms there).
Cf. also A348736.

Programs

Formula

a(n) = A351442(n) - A003958(n) = A351444(n) - n.

A348940 a(n) = gcd(n, A326042(n)), where A326042 is multiplicative function A064989(sigma(A003961(n))).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 11, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 5, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 6, 1, 4, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f1[2, e_] := 1; f1[p_, e_] := NextPrime[p, -1]^e; s[n_] := Times @@ f1 @@@ FactorInteger[n]; f[p_, e_] := s[((q = NextPrime[p])^(e + 1) - 1)/(q - 1)]; s2[1] = 1; s2[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := GCD[n, s2[n]]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));
    A348940(n) = gcd(n, A326042(n));

Formula

a(n) = gcd(n, A326042(n)).
a(n) = gcd(n, A348736(n)) = gcd(A326042(n), A348736(n));
a(n) = n / A348941(n) = A326042(n) / A348942(n).

A348941 a(n) = n / gcd(n, A326042(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 10, 11, 6, 13, 7, 15, 16, 17, 18, 19, 20, 21, 22, 23, 4, 25, 13, 27, 14, 29, 15, 31, 32, 33, 34, 35, 36, 37, 19, 39, 40, 41, 21, 43, 4, 45, 23, 47, 24, 49, 25, 17, 13, 53, 27, 11, 28, 57, 58, 59, 30, 61, 62, 63, 64, 65, 33, 67, 68, 23, 35, 71, 24, 73, 37, 75, 38, 77, 39, 79, 80, 81, 82
Offset: 1

Views

Author

Antti Karttunen, Nov 04 2021

Keywords

Comments

Denominator of ratio A326042(n) / n.
If there are no more 1's in this sequence after the initial one, then there are no odd terms of A336702 (numbers whose abundancy index is a power of 2) larger than one, and neither there are odd terms in A005820 or in A046060. Compare to similar conditions given in A336848, A336849 and A337339.

Crossrefs

Programs

  • Mathematica
    f1[2, e_] := 1; f1[p_, e_] := NextPrime[p, -1]^e; s[n_] := Times @@ f1 @@@ FactorInteger[n]; f[p_, e_] := s[((q = NextPrime[p])^(e + 1) - 1)/(q - 1)]; s2[1] = 1; s2[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := n/GCD[n, s2[n]]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));
    A348941(n) = (n / gcd(n, A326042(n)));

Formula

a(n) = n / A348940(n) = n / gcd(n, A326042(n)).

A349624 Dirichlet convolution of A326042 with A055615 (Dirichlet inverse of n), where A326042(n) = A064989(sigma(A003961(n))).

Original entry on oeis.org

1, -1, -1, 9, -4, 1, -5, -19, 23, 4, -6, -9, -9, 5, 4, 43, -14, -23, -17, -36, 5, 6, -17, 19, 29, 9, -65, -45, -28, -4, -14, -43, 6, 14, 20, 207, -27, 17, 9, 76, -34, -5, -41, -54, -92, 17, -39, -43, 71, -29, 14, -81, -47, 65, 24, 95, 17, 28, -30, 36, -48, 14, -115, 981, 36, -6, -63, -126, 17, -20, -40, -437, -70, 27
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2021

Keywords

Comments

Multiplicative because A055615 and A326042 are.

Crossrefs

Cf. A000203, A003961, A055615, A064989, A326042, A349625 (Dirichlet inverse), A349626.
Cf. also A348736, A349573.

Programs

  • Mathematica
    f1[p_, e_] := NextPrime[p]^e; s1[1] = 1; s1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[2, e_] := 1; f2[p_, e_] := NextPrime[p, -1]^e; s2[1] = 1; s2[n_] := Times @@ f2 @@@ FactorInteger[n]; s[n_] := s2[DivisorSigma[1, s1[n]]]; a[n_] := DivisorSum[n, # * MoebiusMu[#] * s[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A055615(n) = (n*moebius(n));
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));
    A349624(n) = sumdiv(n,d,A055615(n/d)*A326042(d));

Formula

a(n) = Sum_{d|n} A055615(d) * A326042(n/d).
For all n >= 1, Sum_{d|n, dA326042(n) - n = -A348736(n).

A351457 a(n) = A351456(n) - A339905(n).

Original entry on oeis.org

0, -1, -2, 8, -5, -6, -8, -4, 14, -11, -6, 8, -12, -18, -22, 84, -14, -2, -20, -12, -36, -18, -20, -24, 0, -28, -40, -16, -29, -46, -18, 40, -36, -32, -58, 296, -28, -42, -56, -44, -32, -76, -44, 24, -66, -48, -44, 136, 8, -36, -64, -16, -50, -104, -66, -72, -84, -59, -30, -72, -50, -54, -100, 1028, -92, -84, -66
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Crossrefs

Programs

  • PARI
    A339905(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1] = nextprime(1+f[i,1])-1); factorback(f));
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A351456(n) = A003958(sigma(A003961(n)));
    A351457(n) = (A351456(n) - A339905(n));

Formula

a(n) = A351445(A003961(n)) = A351456(n) - A339905(n).
Showing 1-10 of 11 results. Next