cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A349623 Dirichlet inverse of A326042, where A326042(n) = A064989(sigma(A003961(n))).

Original entry on oeis.org

1, -1, -2, -10, -1, 2, -2, 18, -25, 1, -5, 20, -4, 2, 2, 46, -3, 25, -2, 10, 4, 5, -6, -36, -33, 4, 86, 20, -1, -2, -17, -220, 10, 3, 2, 250, -10, 2, 8, -18, -7, -4, -2, 50, 25, 6, -8, -92, -81, 33, 6, 40, -6, -86, 5, -36, 4, 1, -29, -20, -13, 17, 50, -886, 4, -10, -4, 30, 12, -2, -31, -450, -3, 10, 66, 20, 10, -8, -10
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2021

Keywords

Comments

Multiplicative because A326042 is.

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := NextPrime[p]^e; s1[1] = 1; s1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[2, e_] := 1; f2[p_, e_] := NextPrime[p, -1]^e; s2[1] = 1; s2[n_] := Times @@ f2 @@@ FactorInteger[n]; s[n_] := s2[DivisorSigma[1, s1[n]]]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, a[#]*s[n/#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));
    memoA349623 = Map();
    A349623(n) = if(1==n,1,my(v); if(mapisdefined(memoA349623,n,&v), v, v = -sumdiv(n,d,if(dA326042(n/d)*A349623(d),0)); mapput(memoA349623,n,v); (v)));

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A326042(n/d) * a(d).

A349625 Dirichlet convolution of A000027 (identity function) with the Dirichlet inverse of A326042, where A326042(n) = A064989(sigma(A003961(n))).

Original entry on oeis.org

1, 1, 1, -8, 4, 1, 5, 2, -22, 4, 6, -8, 9, 5, 4, 50, 14, -22, 17, -32, 5, 6, 17, 2, -13, 9, 20, -40, 28, 4, 14, -120, 6, 14, 20, 176, 27, 17, 9, 8, 34, 5, 41, -48, -88, 17, 39, 50, -46, -13, 14, -72, 47, 20, 24, 10, 17, 28, 30, -32, 48, 14, -110, -1126, 36, 6, 63, -112, 17, 20, 40, -44, 70, 27, -13, -136, 30, 9, 69
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2021

Keywords

Comments

Multiplicative because A000027 and A349623 are.

Crossrefs

Cf. A000203, A003961, A064989, A326042, A349623, A349624 (Dirichlet inverse).

Programs

  • Mathematica
    f1[p_, e_] := NextPrime[p]^e; s1[1] = 1; s1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[2, e_] := 1; f2[p_, e_] := NextPrime[p, -1]^e; s2[1] = 1; s2[n_] := Times @@ f2 @@@ FactorInteger[n]; s[n_] := s2[DivisorSigma[1, s1[n]]]; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := DivisorSum[n, # * sinv[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));
    memoA349623 = Map();
    A349623(n) = if(1==n,1,my(v); if(mapisdefined(memoA349623,n,&v), v, v = -sumdiv(n,d,if(dA326042(n/d)*A349623(d),0)); mapput(memoA349623,n,v); (v)));
    A349625(n) = sumdiv(n,d,d*A349623(n/d));

Formula

a(n) = Sum_{d|n} d * A349623(n/d).

A349626 Möbius transform of A326042, where A326042(n) = A064989(sigma(A003961(n))).

Original entry on oeis.org

1, 0, 1, 10, 0, 0, 1, -8, 27, 0, 4, 10, 3, 0, 0, 46, 2, 0, 1, 0, 1, 0, 5, -8, 33, 0, -7, 10, 0, 0, 16, 6, 4, 0, 0, 270, 9, 0, 3, 0, 6, 0, 1, 40, 0, 0, 7, 46, 83, 0, 2, 30, 5, 0, 0, -8, 1, 0, 28, 0, 12, 0, 27, 1036, 0, 0, 3, 20, 5, 0, 30, -216, 2, 0, 33, 10, 4, 0, 9, 0, 447, 0, 11, 10, 0, 0, 0, -32, 24, 0, 3, 50, 16
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2021

Keywords

Comments

Dirichlet convolution of Euler phi (A000010) with A349624.
Multiplicative because A326042 is.

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := NextPrime[p]^e; s1[1] = 1; s1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[2, e_] := 1; f2[p_, e_] := NextPrime[p, -1]^e; s2[1] = 1; s2[n_] := Times @@ f2 @@@ FactorInteger[n]; s[n_] := s2[DivisorSigma[1, s1[n]]]; a[n_] := DivisorSum[n, s[#] * MoebiusMu[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));
    A349626(n) = sumdiv(n,d,moebius(n/d)*A326042(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A326042(d).
a(n) = Sum_{d|n} A000010(n/d) * A349624(d).
Showing 1-3 of 3 results.