cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348742 Odd numbers k for which A161942(k) >= k, where A161942 is the odd part of sigma.

Original entry on oeis.org

1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2205, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569, 7921, 8281, 8649, 9025, 9409, 9801, 10201, 10609, 11025, 11449, 11881, 12321
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Comments

All odd squares (A016754) are present, but not all terms are squares. A348743 gives the nonsquare terms.
Odd terms of A336702 form a subsequence. Also all odd terms of A005820 would be present here, as well as any hypothetical quasi-perfect numbers (see comments and references in A332223, A336700), both in A016754. - Antti Karttunen, Nov 28 2024

Crossrefs

Union of A016754 and A348743.
Cf. A161942, A162284 (subsequence), A336702, A348741 (complement among the odd numbers).

Programs

  • Maple
    q:= n-> (t-> is(t/2^padic[ordp](t,2)>=n))(numtheory[sigma](n)):
    select(q, [2*i-1$i=1..10000])[];  # Alois P. Heinz, Nov 28 2024
  • Mathematica
    odd[n_] := n/2^IntegerExponent[n, 2]; Select[Range[1, 10^4, 2], odd[DivisorSigma[1, #]] >= # &] (* Amiram Eldar, Nov 02 2021, edited (because of the changed definition) by Antti Karttunen, Nov 28 2024 *)
  • PARI
    A000265(n) = (n >> valuation(n, 2));
    isA348742(n) = ((n%2)&&A000265(sigma(n))>=n); \\ revised by Antti Karttunen, Nov 28 2024

Extensions

a(1) = 1 inserted as the initial term, because of the changed definition (from > to >=) - Antti Karttunen, Nov 28 2024