A348742 Odd numbers k for which A161942(k) >= k, where A161942 is the odd part of sigma.
1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2205, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569, 7921, 8281, 8649, 9025, 9409, 9801, 10201, 10609, 11025, 11449, 11881, 12321
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Maple
q:= n-> (t-> is(t/2^padic[ordp](t,2)>=n))(numtheory[sigma](n)): select(q, [2*i-1$i=1..10000])[]; # Alois P. Heinz, Nov 28 2024
-
Mathematica
odd[n_] := n/2^IntegerExponent[n, 2]; Select[Range[1, 10^4, 2], odd[DivisorSigma[1, #]] >= # &] (* Amiram Eldar, Nov 02 2021, edited (because of the changed definition) by Antti Karttunen, Nov 28 2024 *)
-
PARI
A000265(n) = (n >> valuation(n, 2)); isA348742(n) = ((n%2)&&A000265(sigma(n))>=n); \\ revised by Antti Karttunen, Nov 28 2024
Extensions
a(1) = 1 inserted as the initial term, because of the changed definition (from > to >=) - Antti Karttunen, Nov 28 2024
Comments