cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A354088 Sum of divisors function conjugated by Pythagorean prime shift: a(n) = A348747(sigma(A348746(n))).

Original entry on oeis.org

1, 1, 2, 5, 7, 2, 1, 3, 31, 7, 2, 10, 4, 1, 14, 121, 6, 31, 3, 35, 2, 2, 2, 6, 106, 4, 10, 5, 19, 14, 1, 35, 4, 6, 7, 155, 14, 3, 8, 21, 8, 2, 11, 10, 217, 2, 2, 242, 38, 106, 12, 20, 31, 10, 14, 3, 6, 19, 6, 70, 29, 1, 31, 1069, 28, 4, 13, 30, 4, 7, 4, 93, 12, 14, 212, 15, 2, 8, 3, 847, 781, 8, 14, 10, 42, 11, 38
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Comments

This is variant of A326042, and like that sequence, also this one is multiplicative.

Crossrefs

Cf. also A326042, A354096 for variants.

Programs

  • PARI
    A348746(n) = { my(f=factor(n)); for(k=1,#f~, if(2==f[k,1], f[k,1]=3, if(3==f[k,1], f[k,1]=5, if(1==(f[k,1]%4), for(i=1+primepi(f[k,1]),oo,if(1==(prime(i)%4), f[k,1]=prime(i); break)))))); factorback(f); };
    A348747(n) = { my(f=factor(n)); for(k=1,#f~, if(f[k,1]<=3, f[k,1]--, if(5==f[k,1], f[k,1]=3, if(1==(f[k,1]%4), forstep(i=primepi(f[k,1])-1,0,-1,if(1==(prime(i)%4), f[k,1]=prime(i); break)))))); factorback(f); };
    A354088(n) = A348747(sigma(A348746(n)));

Formula

Multiplicative with a(p^e) = A348747((q^(e+1)-1)/(q-1)), where q = A348744(A000720(p)).

A348746 Fully multiplicative with a(2) = 3, a(3) = 5, a(A002144(n)) = A002144(1+n) and a(A002145(1+n)) = a(A002145(1+n)) for all n >= 1, where A002144 and A002145 give the primes of the form 4k+1 and 4k+3 respectively.

Original entry on oeis.org

1, 3, 5, 9, 13, 15, 7, 27, 25, 39, 11, 45, 17, 21, 65, 81, 29, 75, 19, 117, 35, 33, 23, 135, 169, 51, 125, 63, 37, 195, 31, 243, 55, 87, 91, 225, 41, 57, 85, 351, 53, 105, 43, 99, 325, 69, 47, 405, 49, 507, 145, 153, 61, 375, 143, 189, 95, 111, 59, 585, 73, 93, 175, 729, 221, 165, 67, 261, 115, 273, 71, 675, 89, 123
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Comments

Permutation of odd numbers. Preserves the prime signature.

Crossrefs

Cf. A000720, A002144, A002145, A348744, A348747 (left inverse).
Cf. also A003961, A332818 for similar maps.

Programs

  • PARI
    A348746(n) = { my(f=factor(n)); for(k=1,#f~, if(2==f[k,1], f[k,1]=3, if(3==f[k,1], f[k,1]=5, if(1==(f[k,1]%4), for(i=1+primepi(f[k,1]),oo,if(1==(prime(i)%4), f[k,1]=prime(i); break)))))); factorback(f); };

Formula

Fully multiplicative with a(p) = A348744(A000720(p)), where A348744 is the lexicographically earliest bijection from primes to odd primes where each prime of the form 4k+1 is mapped to the next larger prime of the same form.

A354092 Fully multiplicative prime shift where the primes of the form 3k+2 are replaced by the previous such prime (with 2 -> 1), and primes of the form 3k and 3k+1 stay as they are.

Original entry on oeis.org

1, 1, 3, 1, 2, 3, 7, 1, 9, 2, 5, 3, 13, 7, 6, 1, 11, 9, 19, 2, 21, 5, 17, 3, 4, 13, 27, 7, 23, 6, 31, 1, 15, 11, 14, 9, 37, 19, 39, 2, 29, 21, 43, 5, 18, 17, 41, 3, 49, 4, 33, 13, 47, 27, 10, 7, 57, 23, 53, 6, 61, 31, 63, 1, 26, 15, 67, 11, 51, 14, 59, 9, 73, 37, 12, 19, 35, 39, 79, 2, 81, 29, 71, 21, 22, 43, 69, 5, 83
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Crossrefs

Left inverse of A354091.
Cf. A064989, A348747 (variants).

Programs

  • PARI
    A354092(n) = { my(f=factor(n)); for(k=1,#f~, if(2==(f[k,1]%3), if(2==f[k,1], f[k,1]--, forstep(i=primepi(f[k,1])-1,0,-1,if(2==(prime(i)%3), f[k,1]=prime(i); break))))); factorback(f); };

Formula

Fully multiplicative with a(2) = 1, a(A003627(1+n)) = A003627(n), a(A007645(n)) = A007645(n).
For all n >= 1, a(A354091(n)) = n.

A348745 Bijection from primes to {1} U primes, a left inverse of A348744.

Original entry on oeis.org

1, 2, 3, 7, 11, 5, 13, 19, 23, 17, 31, 29, 37, 43, 47, 41, 59, 53, 67, 71, 61, 79, 83, 73, 89, 97, 103, 107, 101, 109, 127, 131, 113, 139, 137, 151, 149, 163, 167, 157, 179, 173, 191, 181, 193, 199, 211, 223, 227, 197, 229, 239, 233, 251, 241, 263, 257, 271, 269, 277, 283, 281, 307, 311, 293, 313, 331, 317, 347, 337
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 10000;
    A348745list(up_to) = { my(lista=List([]), xs=Map(), i=2, p, q, u); mapput(xs,3,1); for(n=2,up_to, p = prime(n); if(1==(p%4), for(k=1+n,oo,q=prime(k);if((1==(q%4))&&!mapisdefined(xs,q),break)), while(mapisdefined(xs,prime(i)), i++); q = prime(i)); mapput(xs,q,n)); listput(lista,1); for(i=2,oo,if(!mapisdefined(xs,prime(i),&u),return(Vec(lista)),listput(lista,prime(u)))); };
    v348745 = A348745list(up_to);
    A348745(n) = v348745[n];
Showing 1-4 of 4 results.