cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A354096 a(n) = A354092(sigma(A354091(n))).

Original entry on oeis.org

1, 3, 1, 31, 3, 3, 1, 39, 13, 9, 9, 31, 7, 3, 3, 295, 3, 39, 2, 93, 1, 27, 6, 39, 133, 21, 2, 31, 21, 9, 1, 1953, 9, 9, 3, 403, 19, 6, 7, 117, 3, 3, 5, 279, 39, 18, 27, 295, 57, 399, 3, 217, 6, 6, 27, 39, 2, 63, 9, 93, 31, 3, 13, 19531, 21, 27, 11, 93, 6, 9, 21, 507, 37, 57, 133, 62, 9, 21, 2, 885, 25, 9, 18, 31, 9
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Crossrefs

Programs

  • PARI
    A354091(n) = { my(f=factor(n)); for(k=1,#f~, if(2==(f[k,1]%3), for(i=1+primepi(f[k,1]),oo,if(2==(prime(i)%3), f[k,1]=prime(i); break)))); factorback(f); };
    A354092(n) = { my(f=factor(n)); for(k=1,#f~, if(2==(f[k,1]%3), if(2==f[k,1], f[k,1]--, forstep(i=primepi(f[k,1])-1,0,-1,if(2==(prime(i)%3), f[k,1]=prime(i); break))))); factorback(f); };
    A354096(n) = A354092(sigma(A354091(n)));

Formula

Multiplicative with a(p^e) = A354092((q^(e+1)-1)/(q-1)), where q = A003627(1+n) if p = A003627(n), otherwise q = p.
For all n >= 1, A010872(a(n)) = A010872(A354095(n)).
For all k in A329963, A007949(a(k)) = A007949(sigma(k)) = A354100(k) = 0.

A354206 a(n) = A354203(sigma(A354202(n))), where A354202 is fully multiplicative with a(p) = A354200(A000720(p)), and A354203 is its left inverse.

Original entry on oeis.org

1, 1, 1, 23, 3, 1, 1, 5, 11, 3, 2, 23, 1, 1, 3, 469, 2, 11, 1, 69, 1, 2, 1, 5, 53, 1, 4, 23, 11, 3, 7, 69, 2, 2, 3, 253, 3, 1, 1, 15, 1, 1, 1, 46, 33, 1, 2, 469, 33, 53, 2, 23, 23, 4, 6, 5, 1, 11, 13, 69, 29, 7, 11, 19507, 3, 2, 1, 46, 1, 3, 2, 55, 2, 3, 53, 23, 2, 1, 3, 1407, 2797, 1, 5, 23, 6, 1, 11, 10, 9, 33
Offset: 1

Views

Author

Antti Karttunen, May 23 2022

Keywords

Crossrefs

Cf. A354361 (positions of 1's).
Cf. also A326042, A348750, A354088, A354096 for similar constructions.

Programs

  • PARI
    A354200(n) = if(1==n,5,my(p=prime(n), m=p%4); forprime(q=1+p,,if(m==(q%4),return(q))));
    A354201(n) = if(n<=3,(n+1)\2,my(m=prime(n)%4); forstep(i=n-1,0,-1,if(m==(prime(i)%4),return(prime(i)))));
    A354202(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354200(primepi(f[k,1]))); factorback(f); };
    A354203(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354201(primepi(f[k,1]))); factorback(f); };
    A354206(n) = A354203(sigma(A354202(n)));

Formula

Multiplicative with a(p^e) = A354203((q^(e+1)-1)/(q-1)) where q = A354200(A000720(p)).
a(n) = A354203(A354205(n)) = A354203(sigma(A354202(n))).
a(n) = n - A354207(n).

A354089 Sum of divisors function applied to Pythagorean prime shift: a(n) = sigma(A348746(n)).

Original entry on oeis.org

1, 4, 6, 13, 14, 24, 8, 40, 31, 56, 12, 78, 18, 32, 84, 121, 30, 124, 20, 182, 48, 48, 24, 240, 183, 72, 156, 104, 38, 336, 32, 364, 72, 120, 112, 403, 42, 80, 108, 560, 54, 192, 44, 156, 434, 96, 48, 726, 57, 732, 180, 234, 62, 624, 168, 320, 120, 152, 60, 1092, 74, 128, 248, 1093, 252, 288, 68, 390, 144, 448, 72
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Crossrefs

Inverse Möbius transform of A348746.
Cf. A003973, A354093 for variants.

Programs

  • PARI
    A348746(n) = { my(f=factor(n)); for(k=1,#f~, if(2==f[k,1], f[k,1]=3, if(3==f[k,1], f[k,1]=5, if(1==(f[k,1]%4), for(i=1+primepi(f[k,1]),oo,if(1==(prime(i)%4), f[k,1]=prime(i); break)))))); factorback(f); };
    A354089(n) = sigma(A348746(n));

Formula

Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = A348744(A000720(p)).
a(n) = A000203(A348746(n)).
a(n) = Sum_{d|n} A348746(d).
Showing 1-3 of 3 results.