cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A354093 a(n) = sigma(A354091(n)), where A354091 is fully multiplicative prime shift which replaces the primes of the form 3k+2 by the next larger such prime, while other primes stay as they are, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 6, 4, 31, 12, 24, 8, 156, 13, 72, 18, 124, 14, 48, 48, 781, 24, 78, 20, 372, 32, 108, 30, 624, 133, 84, 40, 248, 42, 288, 32, 3906, 72, 144, 96, 403, 38, 120, 56, 1872, 48, 192, 44, 558, 156, 180, 54, 3124, 57, 798, 96, 434, 60, 240, 216, 1248, 80, 252, 72, 1488, 62, 192, 104, 19531, 168, 432, 68, 744, 120, 576
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Crossrefs

Inverse Möbius transform of A354091.
Cf. A003973, A354089 for variants.

Programs

  • PARI
    A354093(n) = { my(f=factor(n)); for(k=1,#f~, if(2==(f[k,1]%3), for(i=1+primepi(f[k,1]),oo,if(2==(prime(i)%3), f[k,1]=prime(i); break)))); sigma(factorback(f)); };

Formula

Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = A003627(1+n) if p = A003627(n), otherwise q = p.
a(n) = Sum_{d|n} A354091(d).
For all n >= 1, A010872(a(n)) = A010872(A000203(n)) = A074941(n).

A354205 a(n) = sigma(A354202(n)), where A354202 is fully multiplicative with a(p) = A354200(A000720(p)).

Original entry on oeis.org

1, 6, 8, 31, 14, 48, 12, 156, 57, 84, 20, 248, 18, 72, 112, 781, 30, 342, 24, 434, 96, 120, 32, 1248, 183, 108, 400, 372, 38, 672, 44, 3906, 160, 180, 168, 1767, 42, 144, 144, 2184, 54, 576, 48, 620, 798, 192, 60, 6248, 133, 1098, 240, 558, 62, 2400, 280, 1872, 192, 228, 68, 3472, 74, 264, 684, 19531, 252, 960, 72
Offset: 1

Views

Author

Antti Karttunen, May 23 2022

Keywords

Crossrefs

Cf. A000203, A000290 (positions of odd terms), A000720, A354200, A354202, A354204, A354206.
Cf. A003973, A354089, A354093 for variants.

Programs

  • PARI
    A354200(n) = if(1==n,5,my(p=prime(n), m=p%4); forprime(q=1+p,,if(m==(q%4),return(q))));
    A354205(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354200(primepi(f[k,1]))); sigma(factorback(f)); };
    \\ Alternatively:
    A354205(n) = sumdiv(n,d,A354202(d));

Formula

Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = A354200(A000720(p)).
a(n) = A000203(A354202(n)).
a(n) = Sum_{d|n} A354202(d).

A354088 Sum of divisors function conjugated by Pythagorean prime shift: a(n) = A348747(sigma(A348746(n))).

Original entry on oeis.org

1, 1, 2, 5, 7, 2, 1, 3, 31, 7, 2, 10, 4, 1, 14, 121, 6, 31, 3, 35, 2, 2, 2, 6, 106, 4, 10, 5, 19, 14, 1, 35, 4, 6, 7, 155, 14, 3, 8, 21, 8, 2, 11, 10, 217, 2, 2, 242, 38, 106, 12, 20, 31, 10, 14, 3, 6, 19, 6, 70, 29, 1, 31, 1069, 28, 4, 13, 30, 4, 7, 4, 93, 12, 14, 212, 15, 2, 8, 3, 847, 781, 8, 14, 10, 42, 11, 38
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Comments

This is variant of A326042, and like that sequence, also this one is multiplicative.

Crossrefs

Cf. also A326042, A354096 for variants.

Programs

  • PARI
    A348746(n) = { my(f=factor(n)); for(k=1,#f~, if(2==f[k,1], f[k,1]=3, if(3==f[k,1], f[k,1]=5, if(1==(f[k,1]%4), for(i=1+primepi(f[k,1]),oo,if(1==(prime(i)%4), f[k,1]=prime(i); break)))))); factorback(f); };
    A348747(n) = { my(f=factor(n)); for(k=1,#f~, if(f[k,1]<=3, f[k,1]--, if(5==f[k,1], f[k,1]=3, if(1==(f[k,1]%4), forstep(i=primepi(f[k,1])-1,0,-1,if(1==(prime(i)%4), f[k,1]=prime(i); break)))))); factorback(f); };
    A354088(n) = A348747(sigma(A348746(n)));

Formula

Multiplicative with a(p^e) = A348747((q^(e+1)-1)/(q-1)), where q = A348744(A000720(p)).
Showing 1-3 of 3 results.