cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A354091 Fully multiplicative prime shift where the primes of the form 3k+2 are replaced by the next larger such prime, and primes of the form 3k and 3k+1 stay as they are.

Original entry on oeis.org

1, 5, 3, 25, 11, 15, 7, 125, 9, 55, 17, 75, 13, 35, 33, 625, 23, 45, 19, 275, 21, 85, 29, 375, 121, 65, 27, 175, 41, 165, 31, 3125, 51, 115, 77, 225, 37, 95, 39, 1375, 47, 105, 43, 425, 99, 145, 53, 1875, 49, 605, 69, 325, 59, 135, 187, 875, 57, 205, 71, 825, 61, 155, 63, 15625, 143, 255, 67, 575, 87, 385, 83, 1125
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Comments

Permutation of odd numbers. Preserves the prime signature.

Examples

			The primes in A003627 are replaced by the next prime in that sequence, as: 2 -> 5 -> 11 -> 17 -> 23 -> 29 -> 41 -> ..., while other kinds of primes (A002476) stay intact, thus for 60 = 2^2 * 3^1 * 5^1, we have a(60) = 5^2 * 3^1 * 11^1 = 825.
		

Crossrefs

Cf. A354092 (left inverse), A354093 (inverse Möbius transform), A354094 (Möbius transform), A354095, A354096.
Cf. also A003961, A332818, A348746 for similar constructions.

Programs

  • PARI
    A354091(n) = { my(f=factor(n)); for(k=1,#f~, if(2==(f[k,1]%3), for(i=1+primepi(f[k,1]),oo,if(2==(prime(i)%3), f[k,1]=prime(i); break)))); factorback(f); };

Formula

Fully multiplicative with a(A003627(n)) = A003627(1+n), a(A007645(n)) = A007645(n).
For all n >= 1, A354092(a(n)) = n.
For all n >= 1, A046523(a(n)) = A046523(n) and A074941(a(n)) = A074941(n).

A354206 a(n) = A354203(sigma(A354202(n))), where A354202 is fully multiplicative with a(p) = A354200(A000720(p)), and A354203 is its left inverse.

Original entry on oeis.org

1, 1, 1, 23, 3, 1, 1, 5, 11, 3, 2, 23, 1, 1, 3, 469, 2, 11, 1, 69, 1, 2, 1, 5, 53, 1, 4, 23, 11, 3, 7, 69, 2, 2, 3, 253, 3, 1, 1, 15, 1, 1, 1, 46, 33, 1, 2, 469, 33, 53, 2, 23, 23, 4, 6, 5, 1, 11, 13, 69, 29, 7, 11, 19507, 3, 2, 1, 46, 1, 3, 2, 55, 2, 3, 53, 23, 2, 1, 3, 1407, 2797, 1, 5, 23, 6, 1, 11, 10, 9, 33
Offset: 1

Views

Author

Antti Karttunen, May 23 2022

Keywords

Crossrefs

Cf. A354361 (positions of 1's).
Cf. also A326042, A348750, A354088, A354096 for similar constructions.

Programs

  • PARI
    A354200(n) = if(1==n,5,my(p=prime(n), m=p%4); forprime(q=1+p,,if(m==(q%4),return(q))));
    A354201(n) = if(n<=3,(n+1)\2,my(m=prime(n)%4); forstep(i=n-1,0,-1,if(m==(prime(i)%4),return(prime(i)))));
    A354202(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354200(primepi(f[k,1]))); factorback(f); };
    A354203(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354201(primepi(f[k,1]))); factorback(f); };
    A354206(n) = A354203(sigma(A354202(n)));

Formula

Multiplicative with a(p^e) = A354203((q^(e+1)-1)/(q-1)) where q = A354200(A000720(p)).
a(n) = A354203(A354205(n)) = A354203(sigma(A354202(n))).
a(n) = n - A354207(n).

A354088 Sum of divisors function conjugated by Pythagorean prime shift: a(n) = A348747(sigma(A348746(n))).

Original entry on oeis.org

1, 1, 2, 5, 7, 2, 1, 3, 31, 7, 2, 10, 4, 1, 14, 121, 6, 31, 3, 35, 2, 2, 2, 6, 106, 4, 10, 5, 19, 14, 1, 35, 4, 6, 7, 155, 14, 3, 8, 21, 8, 2, 11, 10, 217, 2, 2, 242, 38, 106, 12, 20, 31, 10, 14, 3, 6, 19, 6, 70, 29, 1, 31, 1069, 28, 4, 13, 30, 4, 7, 4, 93, 12, 14, 212, 15, 2, 8, 3, 847, 781, 8, 14, 10, 42, 11, 38
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Comments

This is variant of A326042, and like that sequence, also this one is multiplicative.

Crossrefs

Cf. also A326042, A354096 for variants.

Programs

  • PARI
    A348746(n) = { my(f=factor(n)); for(k=1,#f~, if(2==f[k,1], f[k,1]=3, if(3==f[k,1], f[k,1]=5, if(1==(f[k,1]%4), for(i=1+primepi(f[k,1]),oo,if(1==(prime(i)%4), f[k,1]=prime(i); break)))))); factorback(f); };
    A348747(n) = { my(f=factor(n)); for(k=1,#f~, if(f[k,1]<=3, f[k,1]--, if(5==f[k,1], f[k,1]=3, if(1==(f[k,1]%4), forstep(i=primepi(f[k,1])-1,0,-1,if(1==(prime(i)%4), f[k,1]=prime(i); break)))))); factorback(f); };
    A354088(n) = A348747(sigma(A348746(n)));

Formula

Multiplicative with a(p^e) = A348747((q^(e+1)-1)/(q-1)), where q = A348744(A000720(p)).

A354095 a(n) = A354092(sigma(n)).

Original entry on oeis.org

1, 3, 1, 7, 3, 3, 1, 6, 13, 9, 3, 7, 7, 3, 3, 31, 9, 39, 2, 21, 1, 9, 3, 6, 31, 21, 2, 7, 6, 9, 1, 63, 3, 27, 3, 91, 19, 6, 7, 18, 21, 3, 5, 21, 39, 9, 3, 31, 57, 93, 9, 49, 27, 6, 9, 6, 2, 18, 6, 21, 31, 3, 13, 127, 21, 9, 11, 63, 3, 9, 9, 78, 37, 57, 31, 14, 3, 21, 2, 93, 25, 63, 21, 7, 27, 15, 6, 18, 18, 117, 7
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Crossrefs

Programs

  • PARI
    A354095(n) = { my(f=factor(sigma(n))); for(k=1,#f~, if(2==(f[k,1]%3), if(2==f[k,1], f[k,1]--, forstep(i=primepi(f[k,1])-1,0,-1,if(2==(prime(i)%3), f[k,1]=prime(i); break))))); factorback(f); };

Formula

Multiplicative with a(p^e) = A354092(1 + p + p^2 + ... + p^e).
a(n) = A354092(A000203(n)).
For all n >= 1, A010872(a(n)) = A010872(A354096(n)), A007949(a(n)) = A007949(A000203(n)).
Showing 1-4 of 4 results.