cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A354093 a(n) = sigma(A354091(n)), where A354091 is fully multiplicative prime shift which replaces the primes of the form 3k+2 by the next larger such prime, while other primes stay as they are, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 6, 4, 31, 12, 24, 8, 156, 13, 72, 18, 124, 14, 48, 48, 781, 24, 78, 20, 372, 32, 108, 30, 624, 133, 84, 40, 248, 42, 288, 32, 3906, 72, 144, 96, 403, 38, 120, 56, 1872, 48, 192, 44, 558, 156, 180, 54, 3124, 57, 798, 96, 434, 60, 240, 216, 1248, 80, 252, 72, 1488, 62, 192, 104, 19531, 168, 432, 68, 744, 120, 576
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Crossrefs

Inverse Möbius transform of A354091.
Cf. A003973, A354089 for variants.

Programs

  • PARI
    A354093(n) = { my(f=factor(n)); for(k=1,#f~, if(2==(f[k,1]%3), for(i=1+primepi(f[k,1]),oo,if(2==(prime(i)%3), f[k,1]=prime(i); break)))); sigma(factorback(f)); };

Formula

Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = A003627(1+n) if p = A003627(n), otherwise q = p.
a(n) = Sum_{d|n} A354091(d).
For all n >= 1, A010872(a(n)) = A010872(A000203(n)) = A074941(n).

A354096 a(n) = A354092(sigma(A354091(n))).

Original entry on oeis.org

1, 3, 1, 31, 3, 3, 1, 39, 13, 9, 9, 31, 7, 3, 3, 295, 3, 39, 2, 93, 1, 27, 6, 39, 133, 21, 2, 31, 21, 9, 1, 1953, 9, 9, 3, 403, 19, 6, 7, 117, 3, 3, 5, 279, 39, 18, 27, 295, 57, 399, 3, 217, 6, 6, 27, 39, 2, 63, 9, 93, 31, 3, 13, 19531, 21, 27, 11, 93, 6, 9, 21, 507, 37, 57, 133, 62, 9, 21, 2, 885, 25, 9, 18, 31, 9
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Crossrefs

Programs

  • PARI
    A354091(n) = { my(f=factor(n)); for(k=1,#f~, if(2==(f[k,1]%3), for(i=1+primepi(f[k,1]),oo,if(2==(prime(i)%3), f[k,1]=prime(i); break)))); factorback(f); };
    A354092(n) = { my(f=factor(n)); for(k=1,#f~, if(2==(f[k,1]%3), if(2==f[k,1], f[k,1]--, forstep(i=primepi(f[k,1])-1,0,-1,if(2==(prime(i)%3), f[k,1]=prime(i); break))))); factorback(f); };
    A354096(n) = A354092(sigma(A354091(n)));

Formula

Multiplicative with a(p^e) = A354092((q^(e+1)-1)/(q-1)), where q = A003627(1+n) if p = A003627(n), otherwise q = p.
For all n >= 1, A010872(a(n)) = A010872(A354095(n)).
For all k in A329963, A007949(a(k)) = A007949(sigma(k)) = A354100(k) = 0.

A354094 a(n) = phi(A354091(n)), where A354091 is fully multiplicative prime shift which replaces the primes of the form 3k+2 by the next larger such prime, while other primes stay as they are, and phi is Euler totient function.

Original entry on oeis.org

1, 4, 2, 20, 10, 8, 6, 100, 6, 40, 16, 40, 12, 24, 20, 500, 22, 24, 18, 200, 12, 64, 28, 200, 110, 48, 18, 120, 40, 80, 30, 2500, 32, 88, 60, 120, 36, 72, 24, 1000, 46, 48, 42, 320, 60, 112, 52, 1000, 42, 440, 44, 240, 58, 72, 160, 600, 36, 160, 70, 400, 60, 120, 36, 12500, 120, 128, 66, 440, 56, 240, 82, 600, 72
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Crossrefs

Möbius transform of A354091.
Cf. also A003972.

Programs

  • PARI
    A354094(n) = { my(f=factor(n)); for(k=1,#f~, if(2==(f[k,1]%3), for(i=1+primepi(f[k,1]),oo,if(2==(prime(i)%3), f[k,1]=prime(i); break)))); eulerphi(factorback(f)); };

Formula

Multiplicative with a(p^e) = (q-1) * q^(e-1) where q = A003627(1+n) if p = A003627(n), otherwise q = p.
a(n) = A000010(A354091(n)).
a(n) = Sum_{d|n} A008683(n/d) * A354091(d).
For all n >= 1, A010872(a(n)) = A010872(A000010(n)) = A074942(n).
For all n >= 1, A007949(a(n)) = A007949(A000010(n)) = A354099(n).

A354202 Fully multiplicative with a(p^e) = A354200(A000720(p))^e.

Original entry on oeis.org

1, 5, 7, 25, 13, 35, 11, 125, 49, 65, 19, 175, 17, 55, 91, 625, 29, 245, 23, 325, 77, 95, 31, 875, 169, 85, 343, 275, 37, 455, 43, 3125, 133, 145, 143, 1225, 41, 115, 119, 1625, 53, 385, 47, 475, 637, 155, 59, 4375, 121, 845, 203, 425, 61, 1715, 247, 1375, 161, 185, 67, 2275, 73, 215, 539, 15625, 221, 665, 71, 725
Offset: 1

Views

Author

Antti Karttunen, May 23 2022

Keywords

Comments

Permutation of A007310. Preserves the prime signature.

Crossrefs

Cf. A007310 (terms sorted into ascending order), A354200, A354203 (left inverse), A354204 (Möbius transform), A354205 (inverse Möbius transform).
Cf. also A003961, A108548, A267099, A332818, A348746, A354091 for similar constructions.

Programs

  • PARI
    A354200(n) = if(1==n,5,my(p=prime(n), m=p%4); forprime(q=1+p,,if(m==(q%4),return(q))));
    A354202(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354200(primepi(f[k,1]))); factorback(f); };

A354092 Fully multiplicative prime shift where the primes of the form 3k+2 are replaced by the previous such prime (with 2 -> 1), and primes of the form 3k and 3k+1 stay as they are.

Original entry on oeis.org

1, 1, 3, 1, 2, 3, 7, 1, 9, 2, 5, 3, 13, 7, 6, 1, 11, 9, 19, 2, 21, 5, 17, 3, 4, 13, 27, 7, 23, 6, 31, 1, 15, 11, 14, 9, 37, 19, 39, 2, 29, 21, 43, 5, 18, 17, 41, 3, 49, 4, 33, 13, 47, 27, 10, 7, 57, 23, 53, 6, 61, 31, 63, 1, 26, 15, 67, 11, 51, 14, 59, 9, 73, 37, 12, 19, 35, 39, 79, 2, 81, 29, 71, 21, 22, 43, 69, 5, 83
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Crossrefs

Left inverse of A354091.
Cf. A064989, A348747 (variants).

Programs

  • PARI
    A354092(n) = { my(f=factor(n)); for(k=1,#f~, if(2==(f[k,1]%3), if(2==f[k,1], f[k,1]--, forstep(i=primepi(f[k,1])-1,0,-1,if(2==(prime(i)%3), f[k,1]=prime(i); break))))); factorback(f); };

Formula

Fully multiplicative with a(2) = 1, a(A003627(1+n)) = A003627(n), a(A007645(n)) = A007645(n).
For all n >= 1, a(A354091(n)) = n.
Showing 1-5 of 5 results.