A348840 Triangle T(n,h) read by rows: The number of Motzkin Paths of n>=2 steps that start with an Up step and touch the horizontal axis h>=1 times afterwards.
1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 9, 9, 7, 4, 1, 21, 21, 17, 11, 5, 1, 51, 51, 42, 29, 16, 6, 1, 127, 127, 106, 76, 46, 22, 7, 1, 323, 323, 272, 200, 128, 69, 29, 8, 1, 835, 835, 708, 530, 352, 204, 99, 37, 9, 1, 2188, 2188, 1865, 1415, 965, 587, 311, 137, 46, 10, 1, 5798, 5798, 4963
Offset: 2
Examples
The triangle starts: 1 1 1 2 2 1 4 4 3 1 9 9 7 4 1 21 21 17 11 5 1 51 51 42 29 16 6 1 127 127 106 76 46 22 7 1 323 323 272 200 128 69 29 8 1 835 835 708 530 352 204 99 37 9 1 2188 2188 1865 1415 965 587 311 137 46 10 1 5798 5798 4963 3805 2647 1667 937 457 184 56 11 1 ... T(n,n-1)=1 counts udhhhhh... staying on the horizontal line. T(4,1)=2 counts uudd, uhhd. T(4,2)=2 counts udud, uhdh. T(4,3)=1 counts udhh. T(5,1)=4 counts uudhd uuhdd uhudd uhhhd. T(5,2)=4 counts uuddh uduhd uhdud uhhdh. T(5,3)=3 counts ududh udhud uhdhh. T(5,4)=1 counts udhhh.
Links
- Alois P. Heinz, Rows n = 2..150, flattened
Crossrefs
Programs
-
Maple
b:= proc(x, y) option remember; expand(`if`(y>x or y<0, 0, `if`(x=0, 1, add(b(x-1, y-j), j=-1..1))*`if`(y=0, z, 1))) end: T:= n-> (p-> seq(coeff(p, z, i), i=1..n-1))(b(n-1, 1)): seq(T(n), n=2..14); # Alois P. Heinz, Nov 01 2021
-
Mathematica
b[x_, y_] := b[x, y] = Expand[If[y > x || y < 0, 0, If[x == 0, 1, Sum[b[x - 1, y - j], {j, -1, 1}]]*If[y == 0, z, 1]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 1, n-1}]][b[n-1, 1]]; Table[T[n], {n, 2, 14}] // Flatten (* Jean-François Alcover, Mar 17 2022, after Alois P. Heinz *)
Formula
Conjecture: T(n,n-2) = n-2.
Conjecture: T(n,n-3) = A000124(n-3).
Conjecture: T(n,n-4) = -11 + 19*n/3 - 3*n^2/2 + n^3/6.
From Alois P. Heinz, Nov 01 2021: (Start)
Sum_{k=1..n-1} k * T(n,k) = A005322(n).
T(2n,n) = A344502(n-1) for n >= 1. (End)
Conjecture: Riordan array (g(x)^2, x*g(x)), where g(x) = 1/(1 + x)*c(x/(1 + x)) and c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Feb 04 2024
Comments