A348879
G.f. A(x) satisfies: A(x) = 1 / (1 - x - x^2 * A(3*x)).
Original entry on oeis.org
1, 1, 2, 6, 29, 221, 2815, 59607, 2175115, 134785987, 14543011028, 2682224473296, 864129873439979, 476879023670530355, 460188677448639450646, 761220053428592181980874, 2202591080616789155249254723, 10927081698418028875550581480027, 94836180093445711611212497662570806
Offset: 0
-
nmax = 18; A[] = 0; Do[A[x] = 1/(1 - x - x^2 A[3 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[3^k a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 18}]
A348880
G.f. A(x) satisfies: A(x) = 1 / (1 - x - x^2 * A(4*x)).
Original entry on oeis.org
1, 1, 2, 7, 45, 540, 12645, 578965, 52968266, 9592378291, 3490570329073, 2521575506955308, 3665174976025818601, 10583587128179171478201, 61512603105342112799632050, 710375545029057279438117199695, 16513584476995892580457952423234565
Offset: 0
-
nmax = 16; A[] = 0; Do[A[x] = 1/(1 - x - x^2 A[4 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[4^k a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 16}]
A349035
G.f. A(x) satisfies: A(x) = 1 / (1 - x - x^2 * A(-2*x)).
Original entry on oeis.org
1, 1, 2, 1, 9, 6, 165, 97, 10970, 8617, 2838793, 1206206, 2912348749, 3338391105, 11938619074866, -3485058191151, 195607339607544393, 505337929567029942, 12820529140255160177781, -40595263531274884237983, 3360756421633193695872693450
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = 1/(1 - x - x^2 A[-2 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[(-2)^k a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 20}]
A349013
G.f. A(x) satisfies: A(x) = (1 + x * A(2*x)) / (1 - x^2 * A(x)).
Original entry on oeis.org
1, 1, 3, 14, 119, 1938, 62291, 3990822, 510954584, 130812494690, 66977027614263, 68584738950054184, 140461679588587238360, 575331176899085656611498, 4713113282218244019907299347, 77219649166807400596911172015640, 2530333473325322974256848862067093128
Offset: 0
-
nmax = 16; A[] = 0; Do[A[x] = (1 + x A[2 x])/(1 - x^2 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = 2^(n - 1) a[n - 1] + Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 16}]
Showing 1-4 of 4 results.