A348878
G.f. A(x) satisfies: A(x) = 1 / (1 - x - x^2 * A(2*x)).
Original entry on oeis.org
1, 1, 2, 5, 17, 74, 429, 3297, 34578, 495573, 9888497, 274123802, 10685538941, 583079000129, 44945515778914, 4867082587900837, 746167748281132753, 160981861948404281578, 49223569713040994430285, 21198824279482430844823713, 12946110661470835825027893426
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = 1/(1 - x - x^2 A[2 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[2^k a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 20}]
A348880
G.f. A(x) satisfies: A(x) = 1 / (1 - x - x^2 * A(4*x)).
Original entry on oeis.org
1, 1, 2, 7, 45, 540, 12645, 578965, 52968266, 9592378291, 3490570329073, 2521575506955308, 3665174976025818601, 10583587128179171478201, 61512603105342112799632050, 710375545029057279438117199695, 16513584476995892580457952423234565
Offset: 0
-
nmax = 16; A[] = 0; Do[A[x] = 1/(1 - x - x^2 A[4 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[4^k a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 16}]
A349036
G.f. A(x) satisfies: A(x) = 1 / (1 - x - x^2 * A(-3*x)).
Original entry on oeis.org
1, 1, 2, 0, 17, 29, 1459, -4233, 1056763, 11355763, 6957281732, -209598234798, 410408244241271, 37950250148465939, 218184080600974976674, -60068553848055713514168, 1043447774597599997266176403, 864004926526955255880635472763, 44918734284964096829849186288888390
Offset: 0
-
nmax = 18; A[] = 0; Do[A[x] = 1/(1 - x - x^2 A[-3 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[(-3)^k a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 18}]
Showing 1-3 of 3 results.