cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348901 G.f. A(x) satisfies: A(x) = 1 / (1 + x - 2 * x * A(2*x)).

Original entry on oeis.org

1, 1, 5, 49, 893, 30649, 2030213, 264198625, 68180168717, 35046644401609, 35958357173552597, 73714882938928013809, 302083844634245306686685, 2475275541582550287356775001, 40559867144321249927245807932197, 1329146863668196853655964629931680001
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 03 2021

Keywords

Comments

Counts lower triangular (0,1) matrices with 1's on the diagonal which cannot be decomposed in a nontrivial block diagonal fashion. For example, the third time is 5, counting the matrices [100,110,111], [100,110,011], [100,010,111], [100,110,101], [100,010,101]. There are 3 other 3x3 lower triangular (0,1) matrices with 1's on the diagonal; those others have block decompositions. - David Speyer, Jul 09 2025

Crossrefs

Programs

  • Mathematica
    nmax = 15; A[] = 0; Do[A[x] = 1/(1 + x - 2 x A[2 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = -a[n - 1] + Sum[2^(k + 1) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 15}]

Formula

a(0) = 1; a(n) = -a(n-1) + Sum_{k=0..n-1} 2^(k+1) * a(k) * a(n-k-1).
a(n) ~ 2^(n*(n+1)/2). - Vaclav Kotesovec, Nov 03 2021
G.f. A(x) satisfies 1/(1 - x*A(x)) = Sum_{n>=0} 2^(n(n-1)/2) * x^n. - David Speyer, Jul 09 2025